Microstructure and Thermophysical Properties of Mg-Ga Alloys

Xaoming Fan , Peiyi Ye , Tong Zhao , Lianyou Xu , Xiaomin Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 490 -496.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 490 -496. DOI: 10.1007/s11595-021-2435-5
Advanced Materials

Microstructure and Thermophysical Properties of Mg-Ga Alloys

Author information +
History +
PDF

Abstract

The microstructure and thermal characteristics of Mg-36%Ga, Mg-43%Ga, and Mg-45%Ga(wt%) alloys were investigated. The experimental results show that the microstructure of Mg-36%Ga alloy is mainly composed of primary α-Mg phase and α-Mg+Mg5Ga2 eutectic phase, the microstructure of Mg-43%Ga alloy is mainly composed of α-Mg+Mg5Ga2 eutectic phase, and the microstructure of Mg-45%Ga alloy is mainly composed of primary Mg5Ga2 phase and α-Mg+Mg5Ga2 eutectic phase. The melting enthalpies of Mg-36%Ga, Mg-43%Ga, and Mg-45%Ga are 146.41, 171.90, and 113.90 J/g, with the phase change temperature of 422.57, 422.70, and 422.90 °C, respectively. Mg-43%Ga alloy contains the highest melting enthalpy because of the highest content of α-Mg+Mg5Ga2 eutectic phase. In addition, the thermal expansion of the three alloys increases with increasing temperature, while the thermal diffusivity and thermal conductivity decreases with increasing content of Ga.

Keywords

Mg-Ga alloy / phase change material / thermal energy storage / latent heat storage

Cite this article

Download citation ▾
Xaoming Fan, Peiyi Ye, Tong Zhao, Lianyou Xu, Xiaomin Cheng. Microstructure and Thermophysical Properties of Mg-Ga Alloys. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 490-496 DOI:10.1007/s11595-021-2435-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calderón A, Barreneche C, Hernández-Valle K, et al. Where is Thermal Energy Storage (TES) Research Going? A Bibliometric Analysis[J]. Solar Energy, 2020, 200: 37-50.

[2]

Birchenall CE, Riechman AF. Heat Storage in Eutectic Alloys[J]. Metallurgical Transactions A, 1980, 11(8): 1 415-1 420.

[3]

Gokon N, Jie CS, Nakano Y, et al. Thermal Charge/Discharge Performance of Iron-germanium Alloys as Phase Change Materials for Solar Latent Heat Storage at High Temperatures[J]. Journal of Energy Storage, 2020, 30: 101420.

[4]

Zhang G, Li J, Ma B, et al. Oxidation Resistance and Plating Encapsulation of Cu-based Alloys as Phase Change Materials for High- temperature Heat Storage[J]. Key Engineering Materials, 2013, 537: 292-297.

[5]

Kawaguchi T, Sakai H, Sheng N, et al. Microencapsulation of Zn-Al Alloy as a New Phase Change Material for Middle-high-temperature Thermal Energy Storage Applications[J]. Applied Energy, 2020, 276: 115487.

[6]

Blanco-Rodríguez P, Rodríguez-Aseguinolaza J, Risueño E, et al. Thermophysical Characterization of Mg-51%Zn Eutectic Metal Alloy: A Phase Change Material for Thermal Energy Storage in Direct Steam Generation Applications[J]. Energy, 2014, 72: 414-420.

[7]

Pramothraj M, Santosh R, Swaminathan M R, et al. Study of Effect of Al and Cu Microparticles Dispersed in D-Mannitol PCM for Effective Solar Thermal Energy Storage[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 895-904.

[8]

Fang D, Cheng X, Li Y, et al. Microstructure and Thermal Characteristics of Mg-Sn Alloys as Phase Change Materials for Thermal Energy Storage[J]. RSC Advances, 2016, 6(98): 96 327-96 333.

[9]

Fang D, Sun Z, Li Y, et al. Preparation, Microstructure and Thermal Properties of Mg-Bi Alloys as Phase Change Materials for Thermal Energy Storage[J]. Applied Thermal Engineering, 2016, 92: 187-193.

[10]

Fang D, Cheng X, Ye X, et al. Study on Thermophysical Performance of Mg-Bi-Sn Phase-change Alloys for High Temperature Thermal Energy Storage[J]. Vacuum, 2020, 174: 109164.

[11]

Wu D, Ouyang L, Wu C, et al. Phase Transition and Hydrogen Storage Properties of Mg-Ga Alloy[J]. Journal of Alloys and Compounds, 2015, 642: 180-184.

[12]

Mohedano M, Blawert C, Yasakau KA, et al. Characterization and Corrosion Behavior of Binary Mg-Ga Alloys[J]. Materials Characterization, 2017, 128: 85-99.

[13]

Meng F, Wang J, Rong M, et al. Thermodynamic Assessment of Mg-Ga Binary System[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(003): 450-457.

[14]

Yuan J, Zhang K, Zhang X, et al. Thermal Characteristics of Mg-Zn-Mn Alloys with High Specific Strength and High Thermal Conductivity[J]. Journal of Alloys and Compounds, 2013, 578: 32-36.

[15]

Nayeb-Hashemi AA, Clark JB. The Ga-Mg (Gallium-Magnesium) System[J]. Bulletin of Alloy Phase Diagrams, 1985, 6(5): 434-439.

[16]

Wu S, Yan T, Kuai Z, et al. Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review[J]. Energy Storage Materials, 2020, 25: 251-295.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/