Ultra-small PbSe Quantum Dots Synthesis by Chemical Nucleation Controlling

Fangliang Cheng , Miao Yu , Linyuan Jia , Qihang Tian , Jihong Zhang , Bokhyeon Kim , Xiujian Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 478 -483.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 478 -483. DOI: 10.1007/s11595-021-2433-7
Advanced Materials

Ultra-small PbSe Quantum Dots Synthesis by Chemical Nucleation Controlling

Author information +
History +
PDF

Abstract

Ultra-small PbSe quantum dots (QDs) were synthesized using conventional hot-injection method. A small amount of Sn was used as a nucleation promotion agent to control nucleation and growth during the QDs synthesis process. The average diameter of the QDs is about 1.6 nm, of which absorption peak centers at 550 nm and photoluminescence peak centers at 750 nm under 350 nm laser excitation with power as low as 500 µW. Transmission electron microscopy images confirm that the QDs size well matches with the calculated diameter from Brus equation. This match and electron energy loss spectroscopy analysis proves that Sn is not involved into the final structure of the ultra-small PbSe QDs. An ion-exchange process was proposed for the nucleation control and ultra-small QDs synthesis. The prepared ultra-small QDs could be a promising candidate for luminescence, solar cell devices, and others.

Keywords

quantum dots / hot injection synthesis / photoluminescence / ion-exchange

Cite this article

Download citation ▾
Fangliang Cheng, Miao Yu, Linyuan Jia, Qihang Tian, Jihong Zhang, Bokhyeon Kim, Xiujian Zhao. Ultra-small PbSe Quantum Dots Synthesis by Chemical Nucleation Controlling. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 478-483 DOI:10.1007/s11595-021-2433-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271(5251): 933-937.

[2]

Klimov VI, Mikhailovsky AA, Su X, et al. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots[J]. Science, 2000, 290(5490): 314-317.

[3]

Jacob JM, Lens PNL, Balakrishnan RM. Microbial Synthesis of Chalcogenide Semiconductor Nanoparticles: A Review[J]. Microbial Biotechnology, 2016, 9(1): 11-21.

[4]

Liu C, Heo J. Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices[J]. International Journal of Applied Glass Science, 2013, 4(3): 163-173.

[5]

Marcus S, Niels O, Igor V, et al. Thermoelectric Properties of Lead Chalcogenide Core-shell Nanostructures[J]. Acs Nano, 2011, 5(11): 8 541-8 551.

[6]

Wise FW. ChemInform Abstract: Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement[J]. Acc Chem. Res., 2000, 33(11): 773-780.

[7]

Kang I, Wise FW. Electronic Structure and Optical Properties of PbS and PbSe Quantum Dots[J]. Journal of the Optical Society of America B, Optical Physics, 1997, 14(7): 1 632-1 646.

[8]

Ko DK, Brown PR, Bawendi MG, et al. p-i-n Heterojunction Solar Cells with a Colloidal Quantum-Dot Absorber Layer[J]. Adv. Mater., 2014, 26(28): 4 845-4 850.

[9]

Wehrenberg BL, Wang C, Guyot-Sionnest P. Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots[J]. J. Phys. Chem. B, 2002, 106(41): 10 634-10 640.

[10]

Cheng C. A Multiquantum-dot-doped Fiber Amplifier with Characteristics of Broadband, Flat Gain, and Low Noise[J]. Journal of Lightwave Technology, 2008, 26(9–12): 1 404-1 410.

[11]

Moreels I, Lambert K, Muynck DD, et al. Composition and Size-dependent Extinction Coefficient of Colloidal PbSe Quantum Dots[J]. Chem. Mater., 2007, 19(25): 6 101-6 106.

[12]

Zarghami MH, Liu Y, Gibbs M, et al. p-Type PbSe and PbS Quantum dot Solids Prepared with Short-chain Acids and Diacids[J]. Acs Nano, 2010, 4(4): 2 475

[13]

Vasiliev RB, Dorofeev SG, Dirin DN, et al. Synthesis and Optical Properties of PbSe and CdSe Colloidal Quantum Dots Capped with Oleic Acid[J]. Mendeleev Commun., 2004, 14(4): 169-171.

[14]

Rhee JH, Chung C-C, Diau E W-G. A Perspective of Mesoscopic Solar Cells Based on Metal Chalcogenide Quantum Dots and Organometal-halide Perovskites[J]. Npg Asia Materials, 2013, 5

[15]

Dai QQ, Zhang Y, Wang YN, et al. Size-Dependent Temperature Effects on PbSe Nanocrystals[J]. Langmuir, 2010, 26(13): 11 435-11 440.

[16]

Chang J, Chao L, Heo J. Optical Properties of PbSe Quantum Dots Doped in Borosilicate Glass[J]. J. Non-Cryst. Solids, 2009, 355(37): 1 897-1 899.

[17]

Pietryga JM, Schaller RD, Werder D, et al. Pushing the Band Gap Envelope: Mid-infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126(38): 11 752-11 753.

[18]

Brus L. Electronic Wave-Functions in Semiconductor Clusters-Experiment and Theory[J]. J.Phys.Chem., 1986, 90(12): 2 555-2 560.

[19]

Brus LE. Electron-electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State[J]. J. Chem. Phys., 1984, 80(9): 4 403-4 409.

[20]

Reilly N, Wehrung M, O’Dell R A, et al. Ultrasmall Colloidal PbS Quantum Dots[J]. Materials Chemistry & Physics, 2014, 147(1–2): 1-4.

[21]

Chuang CH, Maurano A, Brandt RE, et al. Open-circuit Voltage Deficit, Radiative Sub-bandgap States, and Prospects in Quantum Dot Solar Cells[J]. Nano Lett., 2015, 15(5): 3 286-3 294.

[22]

Yu K, Hu ZM, Wang R, et al. Thermodynamic Equilibrium-driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized vs. Regular Quantum Dots[J]. Journal of Physical Chemistry C, 2016, 114(8): 3 329-3 339.

[23]

Chen HS, Kumar RV. Synthesis of Ultrasmall Quantum Dots by Redirecting Kinetics-based Crystal Growth to Thermodynamics-based Crystal Dissolution[J]. Rsc Advances, 2012, 2(30): 11 586-11 591.

[24]

Wanli M, Swisher SL, Trevor E, et al. Photovoltaic Performance of Ultrasmall PbSe Quantum Dots[J]. Acs Nano, 2011, 5(10): 8 140-8 147.

[25]

Zhong Z, Chao L, Zhao X. Utilizing Sn Precursor To Promote the Nucleation of PbSe Quantum Dots with in situ Halide Passivation[J]. Journal of Physical Chemistry C, 2015, 119(10): 5 626-5 632.

[26]

Egerton RF. Electron Energy-loss Spectroscopy in the Electron Microscope[M], 1996 New York: Plenum Press.

[27]

Allan G. Confinement Effects in PbSe Quantum Wells and Nanocrystals[J]. Physical Review B, 2004, 70(24): 3 600-3 606.

[28]

Liu H, Guyot-Sionnest P. Photoluminescence Lifetime of Lead Selenide Colloidal Quantum Dots[J]. Journal of Physical Chemistry C, 2010, 114(35): 14 860-14 863.

[29]

Wanjuan L, Karolina F, Gerald G, et al. Highly Luminescent Lead Sulfide Nanocrystals in Organic Solvents and Water Through Ligand Exchange with Poly(acrylic acid)[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(15): 8 215-8 219.

[30]

Fernée MJ, Watt A, Warner J, et al. Inorganic Surface Passivation of PbS Nanocrystals Resulting in Strong Photoluminescent Emission[J]. Nanotechnology, 2003, 14(9): 991-1 013.

[31]

Xin L, Yue L, Zhou B, et al. Shape-Controlled Synthesis of SnE (E = S, Se) Semiconductor Nanocrystals for Optoelectronics[J]. Chem. Mater., 2014, 26(11): 3 515-3 521.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/