Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch

Kang Zhang , Yanping Zheng , Yi Lin , Mi Zhou , Puxin Zhu , Dacheng Wu , Fei Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 465 -471.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 465 -471. DOI: 10.1007/s11595-021-2431-9
Advanced Materials

Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch

Author information +
History +
PDF

Abstract

Waterborne elastic polyester (WEP) with different content of hard polyester was applied in the maize starch (MS) based composites (MS/WEP) via solution casting method. The effects of WEP with different contents of hard polyester on the structure and properties of starch were studied by Fourier transform infrared, X-ray diffraction, ultraviolet-visible, tensile test, differential scanning calorimeter, thermogravimetric analysis and moisture measurement. The experimental results show that the addition of WEP does not change the crystalline type of starch, and only reduces the crystallinity of starch. And the structure and properties of MS/WEP are related to not only the content of starch but also the microstructure of WEP or the content of hard polyester in WEP. Waterborne elastic polyester with 30wt% hard polyester (WEP30) has the best modification effect on the maize starch among all the WEPs. For example, MS/WEP30 film has the optimum toughness, aging resistance and transmittance, the lowest crystallinity and glass transition temperature among all the MS/WEP films, and the lower moisture content. It is related to the compatibility between starch and WEP, resulting from the number of physical crosslinking points in WEP.

Keywords

maize starch / waterborne elastic polyester / hard polyester / compatibility

Cite this article

Download citation ▾
Kang Zhang, Yanping Zheng, Yi Lin, Mi Zhou, Puxin Zhu, Dacheng Wu, Fei Cheng. Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 465-471 DOI:10.1007/s11595-021-2431-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yi T, Qi M, Mo Q, et al. Ecofriendly Preparation and Characterization of a Cassava Starch/Polybutylene Adipate Terephthalate Film[J]. Processes, 2020, 8: 329.

[2]

Xing D, Jia Y, Li D, et al. Novel Multiblock Poly(epsilon caprolactone) Copolyesters Containing D-glucose Derivatives with Different Bicyclic Structures [J]. ACS. Sustain. Chem. Eng., 2017, 5: 7 040-7 051.

[3]

Yang C, Zhou M, Lin Y, et al. Super-tough Poly (L-lactide) Materials: Reactive Blending with Maleic Anhydride Grafted Starch and Poly (ethylene glycol) Diacrylate[J]. Int. J. Biol. Macromol., 2019, 136: 1 069-1 075.

[4]

Zhu T, Wang Y. Alumina Ceramics Fabricated by In-situ Consolidation of Pre-gelling Starch[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2018, 33(3): 758-766.

[5]

Zhu J, Xiong J, Hu X, et al. Mechanical Properties and Wettability of Bagasse-reinforced Composite[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(2): 312-316.

[6]

Zhang S, Lin Z, Li J. Elevated Ductility, Optical, and Air Barrier Properties of Poly(butyleneadipate-co-terephthalate) Bio-based Films via Novel Thermoplastic Starch Feature[J]. Polym. Adv. Technol., 2018, 30: 852-862.

[7]

Arroyo OH, Huneault MA, Favis BD, et al. Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites[J]. Polym. Compos., 2010, 31: 114-126.

[8]

Müller P, Imre B, Bere J, et al. Physical Ageing and Molecular Mobility in PLA Blends and Composites[J]. J. Therm. Anal. Calorim., 2015, 122: 1 423-1 433.

[9]

Mohammad K, Kamran A, Alireza V. Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(1): 248-251.

[10]

Ortega-Toro R, Collazo-Bigliardi S, Talens P, et al. Influence of Citric Acid on the Properties and Stability of Starch-polycaprolactone Based Films[J]. J. Appl. Polym. Sci., 2015, 132: 42 220.

[11]

Averous L, Moro L, Dole P, et al. Properties of Thermoplastic Starch Blends: Starch-polycaprolactone[J]. Polymer, 2000, 41: 4 157-4 167.

[12]

Li G, Favis BD. Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-starch Blends[J]. Macromol. Chem. Phys., 2010, 211: 321-333.

[13]

Matzinos P, Tserki V, Kontoyiannis A, et al. Processing and Characterization of Starch/Polycaprolactone Products[J]. Polym. Degrad. Stabil., 2002, 77: 17-24.

[14]

Wang W, Zhang G, Zhang W, et al. Processing and Thermal Behaviors of Poly(butylene succinate) Blends with Highly-filled Starch and Glycerol[J]. J. Polym. Environ., 2013, 21: 46-53.

[15]

Li J, Luo X, Lin X, et al. Comparative Study on the Blends of PBS/Thermoplastic Starch Prepared from Waxy and Normal Corn Starches [J]. Starch-Stärke, 2013, 65: 831-839.

[16]

Zhang S, He Y, Lin Z. Effects of Tartaric Acid Contents on Phase Homogeneity, Morphology and Properties of Poly (butyleneadipate-co-terephthalate)/Thermoplastic Starch Bio-composities[J]. Polym. Test., 2019, 76: 385-395.

[17]

Olivato JB, Marini J, Pollet E, et al. Elaboration, Morphology and Properties of Starch/Polyester Nano-biocomposites based on Sepiolite Clay[J]. Carbohyd. Polym., 2015, 118: 250-256.

[18]

Garalde RA, Thipmanee R, Jariyasakoolroj P, et al. The Effects of Blend Ratio and Storage Time on Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Films[J]. Heliyon, 2019, 5: e01251.

[19]

Carvalho AJF. Biopolymers and Biodegradable Plastics[M], 2013 New York: Elsevier. 129-152.

[20]

Kalambur S, Rizvi SSH. Biodegradable and Functionally Superior Starch-polyester Nanocomposites from Reactive Extrusion[J]. J. Appl. Polym. Sci., 2005, 96: 1 072-1 082.

[21]

Ren J, Fu H, Ren T, et al. Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(lactic acid) and Poly(butylene adipate-co-terephthalate)[J]. Carbohydr. Polym., 2009, 77: 576-582.

[22]

Mani R, Bhattacharya M. Properties of Injection Moulded Blends of Starch and Modified Biodegradable Polyesters[J]. Eur. Polym. J., 2001, 37: 515-526.

[23]

Hamma A, Kaci M, Ishak ZAM, et al. Starch-grafted-polypropylene/Kenaf Fibres Composites. Part 1: Mechanical Performances and Viscoelastic Behaviour[J]. Compos. Part A-Appl. S., 2014, 56: 328-335.

[24]

Choi EJ, Kim CH, Park JK. Structure-property Relationship in PCL/Starch Blend Compatibilized with Starch-PCL Copolymer[J]. J. Polym. Sci. Pol. Phys., 1999, 37: 2 430-2 438.

[25]

Olivato JB, Grossmann MVE, Yamashita F, et al. Citric Acid and Maleic Anhydride as Compatibilizers in Starch/Poly(butylene adipate-co-terephthalate) Blends by One-step Reactive Extrusion[J]. Carbohyd. Polym., 2012, 87: 2 614-2 618.

[26]

Olivato JB, Müller CMO, Carvalho GM, et al. Physical and Structural Characterization of Starch/Polyester Blends with Tartaric Acid [J]. Mat. Sci. Eng. C-Bio. S., 2014, 39: 35-39.

[27]

Cao X, Zhang L, Huang J, et al. Structure-properties Relationship of Starch/Waterborne Polyurethane Composites[J]. J. Appl. Polym. Sci., 2003, 90: 3 325-3 332.

[28]

Guo Y, Li S, Wang G. Properties and Application of Waterborne Polyurethane/Starch Composite Surface Sizing Agent[J]. Adva. Mater. Res., 2011, 317–319: 15-18.

[29]

Zhang K, Zhang K, Cheng F, et al. Aging Properties and Hydrophilicity of Maize Starch Plasticized by Hyperbranched Poly(citrate glyceride)[J]. J. Appl. Polym. Sci., 2019, 136: 46 899.

[30]

Zheng Y, Zhu P, Cheng F, et al. Preparation of Waterborne Elastic Polyesters by Chain Extension with Isophorone Diisocyanate as a Chain Extender[J]. J. Appl. Polym. Sci., 2019, 136: 48 453.

[31]

Zhang K, Su T, Cheng F, et al. Effect of Sodium Citrate/Polyethylene Glycol on Plasticization and Retrogradation of Maize Starch[J]. Int. J. Biol. Macromol., 2020, 154: 1 471-1 477.

[32]

Myllarinen P. The Crystallinity of Amylose and Amylopectin Films[J]. Carbohyd. Polym., 2002, 48: 41-48.

[33]

Rindlav-Westling A, Stading M, Hermansson AM, et al. Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films[J]. Carbohyd. Polym., 1998, 36: 217-224.

[34]

Mathew AP, Dufresne A. Plasticized Waxy Maize Starch-effect of Polyols and Relative Humidity on Material Properties[J]. Biomacromolecules, 2002, 3: 1 101-1 108.

[35]

Kim CH, Choi EJ, Park JK. Effect of PEG Molecular Weight on the Tensile Toughness of Starch/PCL/PEG Blends[J]. J. Appl. Polym. Sci., 2000, 77: 2 049-2 056.

[36]

van Soest JJG, Hulleman SHD, de Wit D, et al. Crystallinity in Starch Bioplastics [J]. Ind. Crop. Prod., 1996, 5: 11-22.

[37]

Sun S, Liu P, Ji N, et al. Effects of Various Cross-linking Agents on the Physicochemical Properties of Starch/PHA Composite Films Produced by Extrusion Blowing[J]. Food Hydrocolloid., 2018, 77: 964-975.

[38]

Forssell PM, Mikkilti JM, Moates GK, et al. Phase and Glass Transition Behaviour, of Concentrated Barley Starch-glycerol-water Mixtures, a Model for Thermoplastic Starch[J]. Carbohyd. Polym., 1997, 34: 275-282.

[39]

Sahu RK, Patra K. Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation[J]. J. Inst. Eng. India Ser. C, 2014, 95: 207-212.

[40]

Tian Y, Zhang K, Zhou M, et al. High-performance Starch Films Reinforced with Microcrystalline Cellulose Made from Eucalyptus Pulp via Ball Milling and Mercerization[J]. Starch-Stärke, 2019, 71: 1800218.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/