Fracture Behavior and Processing Deformation of C71500 Cupronickel Alloy during Hot Tensile Deformation

Xin Gao , Huibin Wu , Ming Liu , Yuanxiang Zhang , Xiangdong Zhou , Yuguo Zhong

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 407 -415.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 407 -415. DOI: 10.1007/s11595-021-2424-8
Metallic Materials

Fracture Behavior and Processing Deformation of C71500 Cupronickel Alloy during Hot Tensile Deformation

Author information +
History +
PDF

Abstract

The hot tensile deformation properties and microstructure evolution of high purity C71500 cupronickel alloy at 1 023–1 273 K and 0.000 1–0.1 s−1 strain rates were studied by uniaxial hot tensile deformation method. Based on the experimental data, the flow behavior, microstructure and fracture characteristics of the alloy were analyzed after considering the influence of different deformation parameters. The relationship between microstructure and high temperature (T⩾1 023 K) plasticity is discussed, and the fracture mechanism is revealed. The relationship between strain rate sensitivity coefficient and stress index and plastic deformation is discussed. The constitutive equation of the alloy is established by Johnson-Cook model. Based on the dynamic material model, the energy dissipation model is established, and Prasad’s instability criterion based on Ziegler’s expected rheological theory is used to predict the unstable region in the processing map. Processing map in hot tensile is analyzed to provide theoretical basis for different processing technology.

Keywords

cupronickel / mathematical model / hot tensile deformation / fracture / processing map

Cite this article

Download citation ▾
Xin Gao, Huibin Wu, Ming Liu, Yuanxiang Zhang, Xiangdong Zhou, Yuguo Zhong. Fracture Behavior and Processing Deformation of C71500 Cupronickel Alloy during Hot Tensile Deformation. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(3): 407-415 DOI:10.1007/s11595-021-2424-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cincera S, Bresciani E. De-nickelification of 70/30 Cupronickel Tubing in a Cooling Heat Exchanger[J]. Journal of Failure Analysis & Prevention, 2012, 12(3): 300-304.

[2]

Drolenga L J P, Ijsseling F P, Kolster B H. The Influence of Alloy Composition and Microstructure on the Corrosion Behaviour of Cu-Ni Alloys in Seawater[J]. Materials & Corrosion, 2015, 34(4): 167-178.

[3]

Torres Bautista B E, Wikieł A J, Datsenko I, et al. Influence of Extracellular Polymeric Substances (EPS) from Pseudomonas NCIMB 2021 on the Corrosion Behaviour of 70Cu-30Ni Alloy in Sea-water[J]. Journal of Electroanalytical Chemistry, 2015, 737: 184-197.

[4]

Wei M, Yang B, Liu Y, et al. Research Progress and Prospect on Erosion-Corrosion of Cu-Ni Alloy Pipe in Seawater[J]. Journal of Chinese Society for Corrosion & Protection, 2016, 36(6): 513-521.

[5]

Zhang D N, Shangguan Q Q, Xie C J, et al. A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy[J]. Journal of Alloys & Compounds, 2015, 619: 186-194.

[6]

Lin Y C, Chen X M, Liu G. A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel[J]. Materials Science & Engineering, 2010, 527(26): 6980-6986.

[7]

Cao F, Fei X, Xue G. Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al-1.61Zn Alloy[J]. Materials & Design, 2016, 92: 44-57.

[8]

Eftekhari M, Fata A, Faraji G, et al. Hot Tensile Deformation Behavior of Mg-Zn-Al Magnesium Alloy Tubes Processed by Severe Plastic Deformation[J]. Journal of Alloys & Compounds, 2018, 742: 442-453.

[9]

Ao D W, Chu X R, Lin S X, et al. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy under Electropulsing[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(12): 1287-1296.

[10]

Reis A G A, Reis D A P, Abdalla A N J, et al. Hot Tensile Behavior and Fracture Characteristics of a Plasma Nitrided Maraging 300 Steel[J]. Materials Science Forum, 2017, 899: 436-441.

[11]

Huang Y, Liu C, Xiao Z. Hot Tensile Deformation and Fracture Behaviours of Hastelloy C-276 Alloy[J]. Materials Science & Technology, 2017, 34: 1-8.

[12]

Cai J, Zhang X, Wang K, et al. Physics-Based Constitutive Model to Predict Dynamic Recovery Behavior of BFe10-1-2 Cupronickel Alloy during Hot Working[J]. High Temperature Materials & Processes, 2016, 35: 1-9.

[13]

Jun C, Kuaishe W, Wen W. Characterization of High Temperature Deformation Behavior of BFe10-1-2 Cupronickel Alloy Using Constitutive Equation and Processing Map[J]. Rare Metal Materials & Engineering, 2016, 45(10): 2549-2554.

[14]

Shi C, Mao W, Chen X G. Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy[J]. Materials Science & Engineering, 2013, 571: 83-91.

[15]

Deng J, Lin Y C, Li S-S, et al. Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy[J]. Materials & Design, 2013, 49: 209-219.

[16]

Lin Y C, Deng J, Jiang Y-Q, et al. Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy[J]. Materials & Design, 2014, 55: 949-957.

[17]

Zhou M, Lin Y C, Deng J, et al. Hot Tensile Deformation Behaviors and Constitutive Model of An Al-Zn-Mg-Cu Alloy[J]. Materials & Design, 2014, 59: 141-150.

[18]

Gao X, Wu H-B, Liu M, et al. Dynamic Recovery and Recrystallization Behaviors of C71500 Copper-Nickel Alloy Under Hot Deformation[J]. Journal of Materials Engineering & Performance, 2020, 29(11): 7678-7692.

[19]

GEGEL H L, MALAS J C, GUNASEKERA J S, et al. Computer-aided Design of Extrusion Dies by Metal-flow Simulation[M]. AGARD Process Modeling Appl. to Metal Forming and Thermomech, 1984

[20]

Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242 [J]. Metall Trans A, 1984, 15(10): 1883-1892.

[21]

Gao X, Wu H, Liu M, et al. Processing Map of C71500 Copper-nickel Alloy and Application in Production Practice[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(6): 1-12.

[22]

Chen B, Zhou W M, Li S, et al. Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy[J]. Journal of Materials Engineering & Performance, 2013, 22(9): 2458-2466.

[23]

Prager W. On Ideal Locking Materials[J]. Transactions of The Society of Rheology, 1957, 1(1): 169-175.

[24]

Lin Y C, Ding Y, Chen M-S, et al. A New Phenomenological Constitutive Model for Hot Tensile Deformation Behaviors of a Typical Al-Cu-Mg Alloy[J]. Materials & Design, 2013, 52: 118-127.

[25]

Wen Z, Gao X, Cheng J, et al. Processing Map and Hot Deformation Behavior of Mo-Nb Single Crystals[J]. Rare Metal Materials & Engineering, 2018, 47(2): 485-490.

[26]

Zhong T, Rao K P, Prasad Y V R K, et al. Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression[J]. Materials Science & Engineering A, 2013, 559: 773-781.

[27]

Rao K P, Zhong T, Prasad Y V R K, et al. Hot Working Mechanisms in DMD-Processed Versus Cast AZ31-1 wt% Ca Alloy[J]. Materials Science & Engineering A, 2015, 644(8): 184-193.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/