Effects of Different Electrolytes on Stress Corrosion Properties of 2A12 Aluminum Alloy

Gen Jiang , Zhenhai Bai , Binghui Luo , Shuai Wang , Chuan He

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 400 -406.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 400 -406. DOI: 10.1007/s11595-021-2423-9
Metallic Materials

Effects of Different Electrolytes on Stress Corrosion Properties of 2A12 Aluminum Alloy

Author information +
History +
PDF

Abstract

The stress corrosion cracking (SCC) behaviors of 2A12 aluminum alloy after annealing treatment were studied by slow strain rate testing (SSRT), electrochemical polarization measurement, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). Various concentrations of NaCl, H2SO4 and HCl aqueous solution were prepared to act as the corrosive solution. The experimental results show that regarding the SCC, 2A12 alloy performs best in NaCl solution but worst in HCl solution and intermediately between the above mentioned two cases in H2SO4 solution. For the SSRT carried out in room temperature, there is a higher decrease in elongation without large strength loss for the alloy immersed in NaCl solution. With the test conducted in H2SO4 solution, there is a higher strength loss and a relatively less loss of elongation compared to the one immersed in NaCl solution. With the test conducted in HCl solution, there is a relativel level loss of strength and elongation compared to either result carried out in NaCl solution or H2SO4 solution.

Keywords

2A12 aluminum alloy / stress corrosion cracking / corrosive electrolyte / SSRT

Cite this article

Download citation ▾
Gen Jiang, Zhenhai Bai, Binghui Luo, Shuai Wang, Chuan He. Effects of Different Electrolytes on Stress Corrosion Properties of 2A12 Aluminum Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(3): 400-406 DOI:10.1007/s11595-021-2423-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guillaumin V, Mankowski G. Localized Corrosion of 2024 T351 Aluminium Alloy in Chloride Media[J]. Corros. Sci., 1998, 41(3): 421-438.

[2]

Zhen C B, Yi G, Gao Y M, et al. Hydrogen Permeation and Stress Corrosion Cracking Sensitivity of 2A12-T6 Al Alloy in Marine Environment[J]. Chin. J. Nonferrous Met., 2013(8): 2 118–2 124

[3]

Young P S, Payer J H. Stages of Damage Evolution for Al 2024-T3 Around Fasteners in Marine Atmosphere[J]. Corrosion, 2015, 71: 1278-1293.

[4]

Chen X M, Song R G. Progress in Research on Stress Corrosion Cracking of 7000 Series Aluminum Alloys[J]. Corros. Sci. Prot. Technol., 2010, 22(2): 120-123.

[5]

Knight S P, Pohl K, Holroyd N J H, et al. Some Effects of Alloy Composition on Stress Corrosion Cracking in Al-Zn-Mg-Cu Alloys[J]. Corros. Sci., 2015, 98: 50-56.

[6]

Li W B, Pan Q L, Xiao Y P, et al. Microstructure and Mechanical Properties of Al-Zn-Cu-Mg-Sc-Zr Alloy After Retrogression and Re-aging Treatments[J]. J. Cent. South Univ., 2011, 18(2): 279-284.

[7]

Chen S Y, Chen K H, Dong P X, et al. Effect of Recrystallization and Heat Treatment on Strength and SCC of an Al-Zn-Mg-Cu Alloy[J]. J. of Alloys Compd., 2013, 581: 705-709.

[8]

Kazemi M, Danaee I, Zaarei D. The Effect of Pre-anodizing on Corrosion Behavior of Silicate Conversion Coating on AA2024[J]. Mater. Chem. Phys., 2014, 148(1–2): 223-229.

[9]

Han N M, Zhang X M, Liu S D, et al. Effects of Pre-stretching and Ageing on the Strength and Fracture Toughness of Aluminum Alloy 7050[J]. Mater. Sci. Eng. A, 2011, 528(10): 3714-3721.

[10]

Zhang X M, Li H Z, Cheng M A, et al. Effect of Heat Treatment on Stress Corrosion Cracking Susceptibility of Aluminum Alloy 2519[J]. Chin. J. Nonferrous Met., 2006, 16(10): 1743-1748.

[11]

Shen Z J, Liu C H, Ding Q Q, et al. The Structure Determination of Al20Cu2Mn3 by Near Atomic Resolution Chemical Mapping[J]. J. Alloys Compd., 2014, 601: 25-30.

[12]

Ambat R, Dwarakadasa E S. Studies on the Influence of Chloride Ion and pH on the Electrochemical Behaviour of Aluminium Alloys 8090 and 2014[J]. J. App. Electrochem., 1994, 24(9): 911-916.

[13]

Li T, Li X G, Dong C F, et al. Characterization of Atmospheric Corrosion of 2A12 Aluminum Alloy in Tropical Marine Environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591-598.

[14]

Ghosh K S, Mukhopadhyay S, Konar B, et al. Study of Aging and Electrochemical Behaviour of Al Li Cu Mg Alloys[J]. Mater. Corros., 2014, 64(10): 890-901.

[15]

Fang B Y, Lu Y P, Wu J X. Impedance Behavior of 6063 Aluminum Profiles in Different pH Sulfuric Acid Solutions[J]. Surf. Technol., 1998(1): 19–20

[16]

Buchheit R G, Montes L P, Martinez M A, et al. The Electrochemical Characteristics of Bulk-synthesized Al2CuMg[J]. J. Electrochem. Soc., 1999, 146(12): 4424-4428.

[17]

Buchheit R G, Martinez M A, Montes L P. Evidence for Cu Ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring-disk Collection Experiments[J]. J. Electrochem. Soc., 2000, 147(1): 119-124.

[18]

Liu L, Jia Y Y, Jiang J T, et al. The Effect of Cu and Sc on the Localized Corrosion Resistance of Al-Zn-Mg-X Alloys[J]. J. Alloys Compd., 2019, 799: 1-14.

[19]

Wloka J, Gotthold B, Virtanen S. Influence of Second Phase Particles on Initial Electrochemical Properties of AA7010-T76[J]. Electrochim. Acta, 2008, 53(4): 2055-2059.

[20]

Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024-T3 Part I: Localised Corrosion of Isolated IM Particles[J]. Corros. Sci., 2011, 53(1): 17-26.

[21]

Li Q, Zhao J J, Zhang P. Investigation of Stress Corrosion Cracking Initiation of 7A52 Aluminum Alloy[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27(4): 648-651.

[22]

Puiggali M, Zielinski A, Olive J M, et al. Effect of Microstructure on Stress Corrosion Cracking of an Al-Zn-Mg-Cu Alloy[J]. Corros. Sci., 1998, 40(4–5): 0-81.

[23]

Rao A C U, Vasu V, Govindaraju M, et al. Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review[J]. T. Nonferr. Metal Soc., 2016, 26(6): 1447-1471.

[24]

Bobby-Kannan M, Raja V, Raman R, et al. Influence of Multistep Aging on the Stress Corrosion Cracking Behavior of Aluminum Alloy 7010 [J]. Corrosion, 2003, 59: 881-889.

[25]

Burleigh T D. The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys: A Review of the Literature 1980–1989[J]. Corrosion, 1991, 47: 89-98.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/