Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum

Shun Chen , Guoqing Xiong , Ying Su , Xingyang He , Yunxuan Xie , Yunfeng Wang , Minhua Gong

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 392 -399.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 392 -399. DOI: 10.1007/s11595-021-2422-x
Cementitious Materials

Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum

Author information +
History +
PDF

Abstract

Carbide slag was used as an activator to improve the activity of anhydrous phosphogypsum. Carbide slag could greatly improve the mechanical strength of anhydrous phosphogypsum than K2SO4. The compressive strength of 11 wt% carbide slag and 1 wt% K2SO4 activated anhydrous phosphogypsum increased greatly to 8.6 MPa at 3 d, and 11.9 MPa at 7 d, and 16.0 MPa at 28 d, respectively. The rate of hydration heat was accelerated and the total hydration heat was increased, and more calcium sulfate dihydrate was formed and cross-linked with other parts which improved the compressive strength of anhydrous phosphogypsum under the effects of different activators. It was indicated that carbide slag was a highly effective and cost-efficient activator. The result provides a highly effective and low-cost method which results in a novel and high value-added method for the utilization of phosphogypsum in the future.

Keywords

anhydrous phosphogypsum / activation / carbide slag / K2SO4 / compressive strength

Cite this article

Download citation ▾
Shun Chen, Guoqing Xiong, Ying Su, Xingyang He, Yunxuan Xie, Yunfeng Wang, Minhua Gong. Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(3): 392-399 DOI:10.1007/s11595-021-2422-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pérez-López R, Álvarez-Valero A M, Nieto J M. Changes in Mobility of Toxic Elements during the Production of Phosphoric Acid in the Fertilizer Industry of Huelva (SW Spain) and Environmental Impact of Phosphogypsum Wastes[J]. J. Hazard Mater., 2007, 148: 745-750.

[2]

Pérez-López R, Carrero S, Cruz-Hernández P, et al. Sulfate Reduction Processes in Salt Marshes Affected by Phosphogypsum: Geochemical Influences on Contaminant Mobility[J]. J. Hazard Mater., 2018, 350: 154-161.

[3]

Carlos R C, Francisco M, Rafael P L, et al. Valorization of Wastes from the Fertilizer Industry: Current Status and Future Trends[J]. J. Clean. Prod., 2018, 174: 678-690.

[4]

Mohammed F, Biswas W K, Yao H, et al. Sustainability Assessment of Symbiotic Processes for the Reuse of Phosphogypsum[J]. J. Clean. Prod., 2018, 188: 497-507.

[5]

Yang J K, Liu W C, Zhang L L, et al. Preparation of Load-bearing Building Materials from Autoclaved Phosphogypsum[J]. Constr. Build. Mater., 2009, 23(2): 687-693.

[6]

Zhou J, Sheng Z M, Li T T, et al. Preparation of Hardened Tiles from Waste Phosphogypsum by A New Dintermittent Pressing Hydration[J]. Ceram. Int., 2016, 42(6): 7237-7245.

[7]

Rashad A M. Phosphogypsum as A Construction Material[J]. J. Clean. Prod., 2017, 166: 732-743.

[8]

Chen Q S, Zhang Q L, Fourie A, et al. Utilization of Phosphogypsum and Phosphate Tailings for Cemented Paste Backfill[J]. J. Environ. Manage., 2017, 201: 19-27.

[9]

Li X, Du J, Gao L, et al. Immobilization of Phosphogypsum for Cemented Paste Backfill and Its Environmental Effect[J]. J. Clean. Prod., 2017, 156: 137-146.

[10]

Wang Q, Jia R Q. A Novel Gypsum-Based Self-Leveling Mortar Produced by Phosphorus Building Gypsum[J]. Constr. Build. Mater., 2019, 226: 11-20.

[11]

Aminul H M, Chen B, Liu Y T, et al. Improvement of Physico-mechanical and Microstructural Properties of Magnesium Phosphate Cement Composites Comprising with Phosphogypsum[J]. J. Clean. Prod., 2020, 261: 121-268.

[12]

Contreras M, Pérez-López R, Gázquez M J, et al. Fractionation and Fluxes of Metals and Radionuclides During the Recycling Process of Phosphogypsum Wastes Applied to Mineral CO2 Sequestration[J]. Waste Manage., 2015, 45: 412-419.

[13]

Lu W D, Ma B G, Su Y, et al. Preparation of Alpha-hemihydrate Gypsum from Phosphogypsum in Recycling CaCl2 Solution[J]. Constr. Build. Mater., 2019, 214: 399-412.

[14]

Zhang Y H, Wang F, Huang H W, et al. Gypsum Blocks Produced from TiO2 Production By-Products[J]. Environ. Technol., 2016, 37(9): 1094-1100.

[15]

Ma B G, Jin Z H, Su Y, et al. Utilization of Hemihydrate Phosphogypsum for the Preparation of Porous Sound Absorbing Material[J]. Constr. Build. Mater., 2020, 234: 117-346.

[16]

Chen Q S, Zhang Q L, Qi C C, et al. Recycling Phosphogypsum and Construction Demolition Waste for Cemented Paste Backfill and Its Environmental Impact[J]. J. Clean. Prod., 2018, 186: 418-429.

[17]

Geraldo R H, Costa A R D, Kanai J, et al. Calcination Parameters on Phosphogypsum Waste Recycling[J]. Constr. Build. Mater., 2020, 256: 119-406.

[18]

Yang M, Qian J S, Pan L, et al. Hydration of Activated Anhydrate Phosphogypsum[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(03): 535-537.

[19]

Singh M, Garg M. Activation of Gypsum Anhydrite-Slag Mixtures[J]. Cem. Concr. Res., 1995, 25(2): 332-338.

[20]

Yang M, Qian J S. Activation of Anhydrate Phosphogypsum by K2SO4 and Hemihydrate Gypsum[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(6): 1103-1107.

[21]

Wang Y L, Dong S J, Liu L L, et al. Using Calcium Carbide Slag as One of Calcium-Containing Raw Materials to Produce Cement Clinker[J]. Materials Sci. Forum., 2013, 743–744: 171-174.

[22]

Singh N B. The Activation Effect of K2SO4 on the Hydration of Gypsum Anhydrite, CaSO4(II)[J]. J. Am. Ceram. Soc., 2005, 88(1): 196-201.

[23]

Tan H B, Zhang X, He X Y, et al. Utilization of Lithium Slag by Wet-grinding Process to Improve the Early Strength of Sulphoaluminate Cement Paste[J]. J. Clean. Prod., 2018, 205: 536-551.

[24]

He X, Ma M, Su Y, et al. The Effect of Ultrahigh Volume Ultrafine Blast Furnace Slag on the Properties of Cement Pastes[J]. Constr. Build. Mater., 2018, 189: 438-447.

[25]

Allahverdi A, Mahinroosta M. Mechanical Activation of Chemically Activated High Phosphorous Slag Content Cement[J]. Powder Technol., 2013, 245: 182-188.

[26]

Fernández-Jiménez A, Puertas F. Setting of Alkali-activated Slag Cement. Influence of Activator Nature[J]. Adv. Cem. Res., 2001, 13(3): 115-121.

[27]

Yang L C, Guan B H, Wu Z B, et al. Solubility and Phase Transitions of Calcium Sulfate in KCl Solutions Between 85 and 100 °C[J]. Ind. Eng. Chem. Res., 2009, 48(16): 7773-7779.

[28]

Jin Z H, Ma B G, Su Y, et al. Effect of Calcium Sulphoaluminate Cement on Mechanical Strength and Waterproof Properties of Beta-Hemihydrate Phosphogypsum[J]. Constr. Build. Mater., 2020, 242: 118-198.

[29]

Li W T, Yi Y L. Use of Carbide Slag from Acetylene Industry for Activation of Ground Granulated Blast-furnace Slag[J]. Constr. Build. Mater., 2020, 238: 117-713.

[30]

Gameiro A, Silva S A, Faria P, et al. Physical and Chemical Assessment of Lime-metakaolin Mortars: Influence of Binder: Aggregate Ratio[J]. Cem. Concr. Compos., 2014, 45: 264-271.

[31]

Cody A M, Cody R D. Evidence for Micro-biological Induction of 101 Montmartre Twinning of Gypsum (CaSO4•2H2O)[J]. J. Cryst. Growth., 1989, 98(4): 721-30.

[32]

Li H, Zhang H, Li L, et al. Utilization of Low-Quality Desulfurized Ash from Semi-dry Flue Gas Desulfurization by Mixing with Hemihydrate Gypsum[J]. Fuel, 2019, 255: 115-783.

[33]

Hajjouji A E, Murat M. Strength Development and Hydrate Formation Rate. Investigation on Anhydrite Binders[J]. Cem. Concr. Res, 1987, 17(5): 814-820.

[34]

Yang L, Zhang Y S, Yan Y. Utilization of Original Phosphogypsum as Raw Material for the Preparation of Self-Leveling Mortar[J]. J. Clean. Prod., 2016, 127: 204-213.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/