Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material

Jianglong Zhu , Xin Tong , Shuo Niu , Zhiyuan Liu , Dong Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 353 -357.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 353 -357. DOI: 10.1007/s11595-021-2416-8
Advanced Materials

Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material

Author information +
History +
PDF

Abstract

The effects of magnetization on the phase composition, microstructure and thermoelectric transport properties of CoSb3 were studied systematically. The magnetic properties of CoSb3 material were also measured at room temperature in order to confirm its magnetic category. The results of XRD and FESEM analysis indicated that the phase composition and microstructure of the CoSb3 were not affected by magnetization. The results of thermoelectric transport measurement showed that the electrical and thermal transport properties of materials were also not affected by magnetization. These results were mainly attributed to the diamagnetism of the CoSb3 material, which were consistent with the results of the magnetic properties measurement. This study is expected to provide a special research perspective for studying the effects of the external conditions on the structure and properties of thermoelectric materials.

Keywords

CoSb3 materials / magnetization / thermoelectric properties / thermoelectric materials

Cite this article

Download citation ▾
Jianglong Zhu, Xin Tong, Shuo Niu, Zhiyuan Liu, Dong Xu. Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(3): 353-357 DOI:10.1007/s11595-021-2416-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell L E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science, 2008, 321(5895): 1457-1461.

[2]

Snyder G J, Toberer E S. Complex Thermoelectric Materials[M]. Materials for Sustainable Energy: a Collection of Peer-reviewed Research and Review Articles from Nature Publishing Group, 2011: 101–110

[3]

Fleurial J P, Caillat T, Borshchevsky A. Skutterudites: A New Class of Promising Thermoelectric Materials [C]. AIP Conference Proceedings. American Institute of Physics, 1994, 316(1): 40-44.

[4]

Rowe DM. Macro to Nano[M], 2006 Boca Ratcon: CRC Taylor & Francis.

[5]

Sales B C, Mandrus D, Williams R K. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials[J]. Science, 1996, 272(5266): 1325-1328.

[6]

Slack G A, Tsoukala V G. Some Properties of Semiconducting IrSb3 [J]. J. App. Phys., 1994, 76(3): 1665-1671.

[7]

Liu Z Y, Zhu J L, Tong X, et al. A Review of CoSb3-Based Skutterudite Thermoelectric Materials[J]. J. Adv. Ceram., 2020, 9(6): 647-673.

[8]

Qiu P F, Yang J, Liu R H, et al. High-Temperature Electrical and Thermal Transport Properties of Fully Filled Skutterudites RFe4Sb12 (R= Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)[J]. J. App. Phys., 2011, 109(6): 063-713.

[9]

Wei R, Geng H Y, Zhang Z H, et al. Filling-Fraction Fluctuation Leading to Glasslike Ultralow Thermal Conductivity in Caged Skutterudites[J]. Phys. Rev. Lett., 2017, 118(24): 245-901.

[10]

Tan G J, Liu W, Wang S Y, et al. Rapid Preparation of CeFe4Sb12 Skutterudite by Melt Spinning: Rich Nanostructures and High Thermoelectric Performance[J]. J. Mater. Chem. A, 2013, 1(40): 12657-12668.

[11]

Liu Z Y, Zhu W T, Nie X L, et al. Effects of Sintering Temperature on Microstructure and Thermoelectric Properties of Ce-Filled Fe4Sb12 Skutterudites[J]. J. Mater. Sci.: Mater. Electron., 2019, 30(13): 12493-12499.

[12]

Ioffe A V, Ioffe A F. Thermal Conductivity of Semiconductors[J]. Izv. Akad. Nauk SSSR Ser. Fiz, 1956, 20: 65-72.

[13]

Zhou Z, Uher C, Jewell A, et al. Influence of Point-Defect Scattering on the Lattice Thermal Conductivity of Solid Solution Co(Sb1−x Asx)3 [J]. Phys. Rev. B, 2005, 71(23): 235-209.

[14]

Chen L D, Kawahara T, Tang X F, et al. Anomalous Barium Filling Fraction and N-Type Thermoelectric Performance of BayCo4Sb12[J]. J. App. Phys., 2001, 90(4): 1864-1868.

[15]

Zhao W Y, Wei P, Zhang Q J, et al. Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler[J]. J. Am. Chem. Soc., 2009, 131(10): 3713-3720.

[16]

Yu J, Zhao W Y, Wei P, et al. Enhanced Thermoelectric Performance of (Ba, In) Double-Filled Skutterudites via Randomly Arranged Micropores[J]. Appl. Phys. Letter., 2014, 104(14): 142104

[17]

Fu L W, Yang J Y, Peng J Y, et al. Enhancement of Thermoelectric Properties of Yb-Filled Skutterudites by An Ni-Induced “Core-Shell” Structure[J]. J. Mater. Chem. A, 2015, 3(3): 1010-1016.

[18]

Zhao W Y, Liu Z Y, Wei P, et al. Magnetoelectric Interaction and Transport Behaviours in Magnetic Nanocomposite Thermoelectric Materials[J]. Nat. Nanotech., 2017, 12(1): 55-60.

[19]

Zhao W Y, Liu Z Y, Sun Z G, et al. Superparamagnetic Enhancement of Thermoelectric Performance[J]. Nature, 2017, 549(7671): 247-251.

[20]

Liu Z Y, Zhu J L, Wei P, et al. Candidate for Magnetic Doping Agent and High-Temperature Thermoelectric Performance Enhancer: Hard Magnetic M-Type BaFe12O19 Nanometer Suspension[J]. ACS Appl. Mater. Interfaces, 2019, 11(49): 45875-45884.

[21]

Ono T, Miyajima H, Shigeto K, et al. Propagation of a Magnetic Domain Wall in a Submicrometer Magnetic Wire [J]. Science, 1999, 284(5413): 468-470.

[22]

Franken J H, Swagten H J M, Koopmans B. Shift Registers Based on Magnetic Domain Wall Ratchets with Perpendicular Anisotropy[J]. Nat. Nanotech., 2012, 7(8): 499-503.

[23]

Varga R, Zhukov A, Blanco J M, et al. Fast Magnetic Domain Wall in Magnetic Microwires[J]. Phys. Rev. B, 2006, 74(21): 212-405.

[24]

Indla S, Chelvane A, Lodh A, et al. Enhancement in Magnetostrictive Properties of Cobalt Ferrite by Magnetic Field Assisted Compaction Technique[J]. J. Alloy. Compd., 2019, 779: 886-891.

[25]

Dyck J S, Chen W, Uher C, et al. Thermoelectric Properties of the N-Type Filled Skutterudite Ba0.3Co4Sb12 Doped with Ni[J]. J. Appl. Phys., 2002, 91(6): 3698-3705.

[26]

Caillat T, Borshchevsky A, Fleurial J P. Properties of Single Crystalline Semiconducting CoSb3[J]. J. Appl. Phys., 1996, 80(8): 4442-4449.

[27]

Zhu Y G, Shen H L, Zuo L Y, et al. Thermoelectric Properties and Electronic Structure of Te-Doped CoSb3 Compounds[J]. Solid State Commun., 2011, 151(19): 1388-1393.

[28]

Zhang Q, Li X H, Kang Y L, et al. High Pressure Synthesis of Te-Doped CoSb3 with Enhanced Thermoelectric Performance[J]. J. Mater. Sci.: Mater. Electron., 2015, 26(1): 385-391.

[29]

Liu W S, Zhang B P, Li J F, et al. Enhanced Thermoelectric Properties in CoSb3−xTex Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. J. Appl. Phys., 2007, 102(10): 103-717.

[30]

Kim I H, Park K H, Ur S C. Thermoelectric Properties of Sn-Doped CoSb3 Prepared by Encapsulated Induction Melting[J]. J. Alloys Compd., 2007, 442(1–2): 351-354.

[31]

Prytz Ø, Løwik O M, Taftø J. Comparison of Theoretical and Experimental Dielectric Functions: Electron Energy-Loss Spectroscopy and Density-Functional Calculations on Skutterudites[J]. Phys. Rev. B, 2006, 74(24): 245109

[32]

Anno H, Tashiro H, Matsubara K. Transport Properties of CoSb/Su3/Doped with Magnetic Impurities Fe and Ni [C]. Eighteenth International Conference on Thermoelectrics. Proceedings, ICT’99. IEEE, 1999: 169–172 (Cat. No. 99TH8407)

[33]

Ackermann J, Wold A. The Preparation and Characterization of the Cobalt Skutterudites CoP3, CoAs3 and CoSb3[J]. J. Phys. Chem. Solids, 1977, 38(9): 1013-1016.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/