Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites

Jinhang Dai , Shunliang Meng , Chuntian Yang , Wenzhong Lü , Xizi Chen , Yuhao Yin , Fei Liang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 303 -310.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (3) : 303 -310. DOI: 10.1007/s11595-021-2410-1
Advanced Materials

Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites

Author information +
History +
PDF

Abstract

To get a dielectric material with a high dielectric permittivity and suppressed dielectric loss, nano-Ag with a particle size of 20 nm and Ag@TiO2 core-shell particles with diameters of approximately 70–120 nm were embedded in polyvinylidene fluoride (PVDF) to fabricate nano-Ag/Ag@TiO2/PVDF composites. After being modified by nano-Ag with 3 vol% optimal amount, the relative permittivity (ε r) at 100 Hz of 50 vol% Ag@TiO2/PVDF composites was 61, and the dielectric loss can be suppressed to 0.04, almost 96.4% lower than that of unmodified composites, and a higher frequency stability of both ε r and loss has also been found. The underlying mechanism of the reduced loss was attributed to Maxwell-Wagner polarization and the Coulomb blockade effect caused by the introduction of a small amount of nano-Ag, which will block the movement of electrons between metal nanoparticles and composites. The space charge polarization and conductance loss are weakened at lower and higher Ag@TiO2 filling ratios, respectively, thus leading to a very low loss of the composites.

Keywords

polymer composites / dielectric properties / AC impedance spectrum / Ag@TiO2/PVDF / coulomb blockade effect

Cite this article

Download citation ▾
Jinhang Dai, Shunliang Meng, Chuntian Yang, Wenzhong Lü, Xizi Chen, Yuhao Yin, Fei Liang. Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(3): 303-310 DOI:10.1007/s11595-021-2410-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Q, Han K, Gadinski M R, et al. High Energy and Power Density Capacitors From Solution-Processed Ternary Ferroelectric Polymer Nanocomposites[J]. Advanced Materials, 2014, 26(36): 6244-6249.

[2]

Chen Q, Shen Y, Zhang S, et al. Polymer-based Dielectrics With High Energy Storage Density[J]. Annual Review of Materials Research, 2015, 45: 433-458.

[3]

Baeg K J, Khim D, Jung S W, et al. Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-K Dielectric for Ambipolar Electronic Circuits[J]. Advanced Materials, 2012, 24(40): 5433-5439.

[4]

Zhang L, Shan X, Bass P, et al. Process and Microstructure to Achieve Ultra-High Dielectric Constant in Ceramic-Polymer Composites[J]. Scientific Reports, 2016, 6: 35763.

[5]

Shen Y, Lin Y H, Nan C W. Interfacial Effect on Dielectric Properties of Polymer Nanocomposites Filled with Core/Shell-Structured Particles[J]. Advanced Functional Materials, 2007, 17(14): 2405-2410.

[6]

Zhou L, Fu Q, Xue F, et al. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40792-40800.

[7]

Huang X, Jiang P. Core-Shell Structured High-K Polymer Nanocomposites for Energy Storage and Dielectric Applications[J]. Advanced Materials, 2015, 27(3): 546-554.

[8]

Zhang L, Cheng Z Y. Development of Polymer-Based 0–3 Composites with High Dielectric Constant[J]. Journal of Advanced Dielectrics, 2011, 1(04): 389-406.

[9]

Aleiner I L, Brouwer P W, Glazman L I. Quantum Effects in Coulomb Blockade[J]. Physics Reports, 2002, 358(5–6): 309-440.

[10]

Luo S, Yu S, Sun R, et al. Nano Ag-deposited BaTiCO3 Hybrid Particles as Fillers for Polymeric Dielectric Composites: Toward High Dielectric Constant and Suppressed Loss[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 176-182.

[11]

Li K, Wang H, Xiang F, et al. Surface Functionalized Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride) Nanocomposites with Significantly Enhanced Dielectric Properties[J]. Applied Physics Letters, 2009, 95(20): 202904

[12]

Feng Q, Dang Z, Li N, et al. Preparation and Dielectric Property of Ag-PVA Nano-Composite[J]. Materials Science and Engineering: B, 2003, 99(1–3): 325-328.

[13]

Berven C A, Clarke L, Mooster J L, et al. Defect-Tolerant Single-Electron Charging at Room Temperature in Metal Nanoparticle Decorated Biopolymers[J]. Advanced Materials, 2001, 13(2): 109-113.

[14]

Xie L, Huang X, Li B W, et al. Core-Satellite Ag@BaTiO3 Nanoassemblies for Fabrication of Polymer Nanocomposites with High Discharged Energy Density, High Breakdown Strength and Low Dielectric Loss[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17560-17569.

[15]

Wang L, Huang X, Zhu Y, et al. Enhancing Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via the Room Temperature Coulomb Blockade Effect of Ultra-Small Platinum Nanoparticles[J]. Physical Chemistry Chemical Physics, 2018, 20(7): 5001-5011.

[16]

Liang F, Zhao Y, Chen X, et al. Dielectric Properties of Polytetrafluo-roethylene/CaCu3Ti4O12 Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 189-194.

[17]

Yang W, Yu S, Sun R, et al. Nano-and Microsize Effect of CCTO Fillers on the Dielectric Behavior of CCTO/PVDF Cmposites[J]. Acta Materialia, 2011, 59(14): 5593-5602.

[18]

Ghosh B, Calderón R M T, Espinoza-González R, et al. Enhanced Dielectric Properties of PVDF/CaCu3Ti4O12: Ag Composite Films[J]. Materials Chemistry and Physics, 2017, 196: 302-309.

[19]

Ansari M O, Khan M M, Ansari S A, et al. Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO2@Polyaniline Nanocomposite Film[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8124-8133.

[20]

Feng Y, Yin J, Chen M, et al. Effect of Nano-TiO2 on the Polarization Process of Polyimide/TiO2 Composites[J]. Materials Letters, 2013, 96: 113-116.

[21]

Qi L, Lee B I, Chen S, et al. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics[J]. Advanced Materials, 2005, 17(14): 1777-1781.

[22]

Kobayashi M, Saito H, Boury B, et al. Epoxy-Based Hybrids Using TiO2 Nanoparticles Prepared via a Non-Hydrolytic Sol-Gel Route[J]. Applied Organometallic Chemistry, 2013, 27(11): 673-677.

[23]

Liang F, Zhang L, Lu W Z, et al. Dielectric Performance of Polymer-Based Composites Containing Core-Shell Ag@TiO2 Nanoparticle Fillers[J]. Applied Physics Letters, 2016, 108(7): 072902

[24]

Lu J, Moon K S, Xu J, et al. Synthesis and Dielectric Properties of Novel High-K Polymer Composites Containing In-Situ Formed Silver Nanoparticles for Embedded Capacitor Applications[J]. Journal of Materials Chemistry, 2006, 16(16): 1543-1548.

[25]

Li Q, Wang Q. Ferroelectric Polymers and Their Energy-Related Applications[J]. Macromolecular Chemistry and Physics, 2016, 217(11): 1228-1244.

[26]

Han K, Li Q, Chanthad C, et al. A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density[J]. Advanced Functional Materials, 2015, 25(23): 3505-3513.

[27]

Dang Z M, Yao S H, Yuan J K, et al. Tailored Dielectric Properties Based on Microstructure Change in BaTiO3-Carbon Nanotube/Polyvinylidene Fluoride Three-Phase Nanocomposites[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13204-13209.

[28]

Xu H P, Dang Z M, Bing N C, et al. Temperature Dependence of Electric and Dielectric Behaviors of Ni/Polyvinylidene Fluoride Composites[J]. Journal of Applied Physics, 2010, 107(3): 034105

[29]

Chen F, Yang D, Zha W, et al. Solid Polymer Electrolytes Incorporating Cubic Li7La3Zr2O12 for All-Solid-State Lithium Rechargeable Batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114.

[30]

Zhou W, Xu L, Jiang L, et al. Towards Suppressing Loss Tangent: Effect of SiO2 Coating Layer on Dielectric Properties of Core-Shell Structure Flaky Cu Reinforced PVDF Composites[J]. Journal of Alloys and Compounds, 2017, 710: 47-56.

[31]

Xu J, Wong C P. Low-Loss Percolative Dielectric Composite[J]. Applied Physics Letters, 2005, 87(8): 082907

[32]

Qi L, Lee B I, Chen S, et al. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics[J]. Advanced Materials, 2005, 17(14): 1777-1781.

[33]

Sun X, Li Y. Ag@C Core/Shell Structured Nanoparticles: Controlled Synthesis, Characterization, and Assembly[J]. Langmuir, 2005, 21(13): 6019-6024.

[34]

Hong J I, Schadler L S, Siegel R W, et al. Rescaled Electrical Properties of ZnC/Low Density Polyethylene Nanocomposites[J]. Applied Physics Letters, 2003, 82(12): 1956-1958.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/