Comparison of Flame-retardancy Property and Mechanism between a Phosphate Ester and a Phosphoramine Flame-retardants

Shiqian Qin , Zhiyi Yang , Shuai Zhang , Zhiye Zhang , Xinlong Wang , Xiushan Yang , Tao Luo , Lin Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 148 -156.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 148 -156. DOI: 10.1007/s11595-021-2388-8
Organic Materials

Comparison of Flame-retardancy Property and Mechanism between a Phosphate Ester and a Phosphoramine Flame-retardants

Author information +
History +
PDF

Abstract

A halogen-free flame-retardant (hydroquinone bis (N, N’-diarylphosphoramidate), 4N-HDP) containing phosphorus-nitrogen was synthesized. Its structure was characterized by infrared spectroscopy (IR), nuclear magnetic resonance (1H-NMR and 31P-NMR). Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical burning test (UL-94), thermogravimetric-infrared instrument (TG-IR) and scanning electron microscopy (SEM) were used to compare the flame-retarding performance and mechanism of hydroquinone bis (diphenyl phosphate) (HDP) and 4N-HDP. TG, IR and TG-IR were used for comparative analysis, indicating that both HDP and 4N-HDP are flame-retardants, and the gas phase and condensed phase act synergistically. In the pyrolysis process, it is divided into two steps: the first step is the breakage of large molecules to small molecules; the second step is the gasification and carbonization of small molecules, and eventually produces phosphate ester and non-flammable gases. Through the comparison of various results, it could be found that 4N-HDP has better flame-retarding performance compared to HDP in the composite with polycarbonate (PC).

Keywords

flame-retardant / phosphoramine / thermogravimetric analysis / polycarbonates / TG-IR

Cite this article

Download citation ▾
Shiqian Qin, Zhiyi Yang, Shuai Zhang, Zhiye Zhang, Xinlong Wang, Xiushan Yang, Tao Luo, Lin Yang. Comparison of Flame-retardancy Property and Mechanism between a Phosphate Ester and a Phosphoramine Flame-retardants. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(1): 148-156 DOI:10.1007/s11595-021-2388-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naik P U, Refes K, Sadaka F, et al. Organo-Catalyzed Synthesis of Aliphatic Polycarbonates in Solvent-Free Conditions[J]. Polym. Chem-UK, 2012, 3(6): 1 475

[2]

Hou S, Yong J Z, Jiang P. Phosphonium Sulfonates as Flame Retardants for Polycarbonate[J]. Polym. Degrad. Stabil., 2016, 130(8): 165-172.

[3]

Nodera A, Kanai T. Thermal Decomposition Behavior and Flame Retardancy of Polycarbonate Containing Organic Metal Salts: Effect of Salt Composition[J]. J. Appl. Polym. Sci., 2004, 94(5): 2 131-2 139.

[4]

Kim J S, KlSener J, Flor S, et al. Toxicity Assessment of Air-Delivered Particle-Bound Polybrominated Diphenyl Ethers[J]. Toxicol, 2014, 317: 31-39.

[5]

Ren Y Y, Chen L, Zhang Z Y, et al. Synergistic Effect of Hydroquinone Bis(di-2-methylphenyl phosphate) and Novolac Phenol in ABS Composites[J]. Polym. Degrad. Stabil., 2014, 109: 285-292.

[6]

Chen L, Yang Z, Ren Y Y, et al. Fourier Transform Infrared Spectroscopy-Thermogravimetry Analysis of the Thermal Decomposition Mechanism of an Effective Flame Retardant, Hydroquinone Bis(-di-2-methylphenyl phosphate)[J]. Polym. Bull., 2016, 73(4): 927-939.

[7]

Lu S Y, Hamerton I. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers[J]. Prog. Polym. Sci., 2002, 27(8): 1 661-1 712.

[8]

Nguyen C, Kim J. Thermal Stabilities and Flame Retardancies of Nitrogen-Phosphorus Flame Retardants Based on Bisphosphoramidates[J]. Polym. Degrad. Stabil., 2008, 93(6): 1 037-1 043.

[9]

Tan Y, Shao Z B, Yu L X, et al. Polyethyleneimine Modified Ammonium Polyphosphate toward Polyamine-Hardener for Epoxy Resin: Thermal Stability, Flame Retardance and Smoke Suppression[J]. Polym. Degrad. Stabil., 2016, 131: 62-70.

[10]

Li Q, Jiang P, Su Z, et al. Synergistic Effect of Phosphorus, Nitrogen, and Silicon on Flame-Retardant Properties and Char Yield in Polypropylene[J]. J. Appl. Polym. Sci., 2005, 96(3): 854-860.

[11]

Gaan S, Gang S, Hutches K, et al. Effect of Nitrogen Additives on Flame Retardant Action of Tributyl Phosphate: Phosphorus-Nitrogen Synergism[J]. Polym. Degrad. Stabil., 2008, 93(1): 99-108.

[12]

Fu Q J, Wang X L, Zhang Z Y, et al. Synthesis of Phosphorus Flame Retardant HDP in a Novel Process and Its Role in ABS Composites[J]. Acta. Polym. Sin., 2013(2): 166–173

[13]

Zhang S, Tao L, Liang M, et al. Study on Synthesis of Aromatic Diphosphate Flame Retardants and Its Application in Flame Retarded Polycarbonate[J]. Plast. Sci. Technol., 2014, 42(3): 107-110.

[14]

Yang Y, Niu M, Li J, et al. Synthesis of a Novel Microcapsule Flame Retardant and Flame-Retardant Property of Its Composites with Poly (Ethylene Terephthalate)[J]. J. Polym. Res., 2017, 24(11): 192

[15]

Fei X, Congcong Z, Chao G, et al. A Wrapped Nano-Flame Retardant Composed of Carbon Nanotubes and Phosphorus-Nitrogen Containing Polymer: Synthesis, Properties and Flame-Retardant Mechanism[J]. J. Polym. Res., 2018, 25(9): 201

[16]

Toan M, Park J O, Kim H U, et al. Synthesis and Characterization of a New Phosphorus-Containing Furan-Based Epoxy Curing Agent as a Flame Retardant[J]. Fire & Materials, 2019, 43(6): 717-724.

[17]

Xueying S, Ji H, Yan S, et al. Flame Retardancy of Epoxy Resin/β-cyclodextrin@Resorcinol Bisdiphenylphosphate Inclusion Composites[J]. J. Wuhan. Univ. Technol., 2020, 35(2): 455-463.

[18]

Chen Y, Wang Q. Preparation, Properties and Characterizations of Halogen-Free Nitrogen-Phosphorous Flame-Retarded Glass Fiber Reinforced Polyamide 6 Composite[J]. Polym. Degrad. Stabil., 2006, 91(9): 2 003-2 013.

[19]

Guan J P, Chen G Q. Flame Retardancy Finish with an Organophosphorus Retardant on Silk Fabrics[J]. Fire & Materials, 2006, 30(6): 415-424.

[20]

Huang Z, Shi W. Synthesis and Properties of Poly(bisphenol a Acryloxyethyl phosphate) as a UV Curable Flame Retardant Oligomer[J]. Eur. Polym. J., 2006, 42(7): 1 506-1 515.

[21]

Huang Z, Shi W. Synthesis and Properties of a Novel Hyperbranched Polyphosphate Acrylate Applied to UV Curable Flame Retardant Coatings[J]. Eur. Polym. J., 2007, 43(4): 1 302-1 312.

[22]

Hoang D, Kim J. Synthesis and Applications of Biscyclic Phosphorus Flame Retardants[J]. Polym. Degrad. Stabil., 2008, 93(1): 36-42.

[23]

Zhao W, Li B, Xu M, et al. Novel Intumescent Flame Retardants: Synthesis and Application in Polycarbonate[J]. Fire. Mater., 2013, 37(7): 530-546.

[24]

Gao L P, Wang D Y, Wang Y Z, et al. A Flame-Retardant Epoxy Resin Based on a Reactive Phosphorus-Containing Monomer of DODPP and Its Thermal and Flame-Retardant Properties[J]. Polym. Degrad. Stabil., 2008, 93(7): 1 308-1 315.

[25]

Wang S, Wang P, Wang X, et al. Determination of Trace Hg Element in Gas by CVAAS with Single Optical Path[J]. Spectrosc. Spect. Anal., 2009, 29(8): 2 262-2 265.

[26]

Xu L, Xiao K. CFD-Based Study on Countermeasure Performance of Anti-infrared Smoke Screen[J]. Infrared Technology, 2015(4): 337–341

[27]

Zhu S, Shi W. Thermal Degradation of a New Flame Retardant Phosphate Methacrylate Polymer[J]. Polym. Degrad. Stabil., 2003, 80(2): 217-222.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/