High Purity Hydrogen Production by Metal Hydride System: A Parametric Study Based on the Lumped Parameter Model

Koua Alain Jesus Koua , Liang Tong , Tianqi Yang , Jinsheng Xiao

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 127 -135.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 127 -135. DOI: 10.1007/s11595-021-2385-y
Metallic Materials

High Purity Hydrogen Production by Metal Hydride System: A Parametric Study Based on the Lumped Parameter Model

Author information +
History +
PDF

Abstract

The simulation of hydrogen purification in a mixture gas of hydrogen/carbon dioxide (H2/CO2) by metal hydride system was reported. The lumped parameter model was developed and validated. The validated model was implemented on the software Matlab/Simulink to simulate the present investigation. The simulation results demonstrate that the purification efficiency depends on the external pressure and the venting time. An increase in the external pressure and enough venting time makes it possible to effectively remove the impurities from the tank during the venting process and allows to desorb pure hydrogen. The impurities are partially removed from the tank for low external pressure and venting time during the venting process and the desorbed hydrogen is contaminated. Other parameters such as the overall heat transfer coefficient, solid material mass, supply pressure, and the ambient temperature influence the purification system in terms of the hydrogen recovery rate. An increase in the overall heat transfer coefficient, solid material mass, and supply pressure improves the hydrogen recovery rate while a decrease in the ambient temperature enhances the recovery rate.

Keywords

hydrogen production / hydrogen purification / carbon dioxide / metal hydride / lumped parameter / parametric study

Cite this article

Download citation ▾
Koua Alain Jesus Koua, Liang Tong, Tianqi Yang, Jinsheng Xiao. High Purity Hydrogen Production by Metal Hydride System: A Parametric Study Based on the Lumped Parameter Model. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(1): 127-135 DOI:10.1007/s11595-021-2385-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hui W, Ajay KP, Suresh GA. Accelerating Hydrogen Absorption in a Metal Hydride Storage Tank by Physical Mixing[J]. Int. J. Hydrogen Energy, 2014, 39: 11 035-11 046.

[2]

Chen X, Wei L, Yang F, et al. A Review on the Metal Hydride Based Hydrogen Purification and Separation Technology[J]. Applied Mechanics and Materials, 2014, 448–453: 3 027-3 036.

[3]

Nasrallah S, Jemni A. Heat and Mass Transfer Models in Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1997, 22: 67-76.

[4]

Jemni A, Nasrallah S. Study of Two-Dimensional Heat and Mass Transfer during Absorption in a Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1995, 20: 43-52.

[5]

Jemni A, Nasrallah S. Study of Two-Dimensional Heat and Mass Transfer During Desorption in a Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1995, 20: 881-891.

[6]

Garrier S, Delhomme B, De Rango P, et al. A New MgH2 Tank Concept Using a Phase-Change Material to Store the Heat of Reaction[J]. Int. J. Hydrogen Energy, 2013, 38: 9 766-9 771.

[7]

Mellouli S, Askri F, Dhaou H, et al. Numerical Study of Heat Exchanger Effects on Charge/Discharge Times of Metal-Hydrogen Storage Vessel[J]. Int. J. Hydrogen Energy, 2009, 34: 3 005-3 017.

[8]

El Mghari H, Huot J, Xiao J. Analysis of Hydrogen Storage Performance of Metal Hydride Reactor with Phase Change Materials[J]. Int. J. Hydrogen Energy, 2017, 44(54): 28 893-28 908.

[9]

Askri F, Jemni A, Nasrallah S. Prediction of Transient Heat and Mass Transfer in a Closed Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 2004, 29: 195-208.

[10]

Chung CA, Ho CJ. Thermal-Fluid Behavior of the Hydriding and Dehydriding Processes in a Metal Hydride Hydrogen Storage Canister[J]. Int. J. Hydrogen Energy, 2009, 34: 4 351-4 364.

[11]

Yang F, Wang G, Zhang Z, et al. Design of the Metal Hydride Reactor-A Review on the Key Technical Issues[J]. Int. J. Hydrogen Energy, 2010, 35: 3 832-3 840.

[12]

Laurencelle F, Goyette J. Simulation of Heat Transfer in a Metal Hydride Reactor with Aluminum Foam[J]. Int. J. Hydrogen Energy, 2007, 32: 2 957-2 964.

[13]

Mellouli S, Dhaou H, Askri F, et al. Hydrogen Storage in Metal Hydride Tanks Equipped with Metal Foam Heat Exchanger[J]. Int. J. Hydrogen Energy, 2009, 34: 9 393-9 401.

[14]

Minko K, Artemov V, Yan’kov G. Numerical Simulation of Sorption/Desorption Processes in Metal-Hydride Systems for Hydrogen Storage and Purification. Part I: Development of a Mathematical Model[J]. Int. J. Heat and Mass Transfer, 2014, 68: 683-692.

[15]

Minko K, Artemov V, Yan’kov G. Numerical Simulation of Sorption/Desorption Processes in Metal-Hydride Systems for Hydrogen Storage and Purification. Part II: Verification of the Mathematical Model[J]. Int. J. Heat and Mass Transfer, 2014, 68: 693-702.

[16]

Minko K, Artemov V, Yan’kov G. Numerical Study of Hydrogen Purification Using Metal Hydride Reactor with Aluminum Foam[J]. Applied Thermal Engineering, 2015, 76: 175-184.

[17]

Talaganis BA, Meyer GO, Aguirre PA. Modeling and Simulation of Absorption-Desorption Cyclic Processes for Hydrogen Storage-Compression Using Metal Hydrides[J]. Int. J. Hydrogen Energy, 2011, 36: 13 621-13 631.

[18]

Talaganis BA, Meyer GO, Oliva DG, et al. Modeling and Optimal Design of Cyclic Processes for Hydrogen Purification Using Hydride-Forming Metals[J]. Int. J. Hydrogen Energy, 2014, 39: 18 997-19 008.

[19]

Xiao J, Tong L, Yang T, et al. Lumped Parameter Simulation of Hydrogen Storage and Purification Systems Using Metal Hydrides[J]. Int. J. Hydrogen Energy, 2017, 42: 3 698-3 707.

[20]

Artemov VI, Minko KB, Yan’kov GG. Numerical Study of Heat and Mass Transfer Processes in a Metal Hydride Reactor for Hydrogen Purification[J]. Int. J. Hydrogen Energy, 2016, 41: 9 762-9 768.

[21]

Miura S, Fujisawa A, Ishida M. A Hydrogen Purification and Storage System Using Metal Hydride[J]. Int. J. Hydrogen Energy, 2012, 37: 2 794-2 799.

[22]

Miura S, Fujisawa A, Tomekawa S, et al. A Hydrogen Purification and Storage System Using CO Adsorbent and Metal Hydride[J]. J. Alloys Compd., 2013, 580: S414-S417.

[23]

Fujisawa A, Miura S, Yamashita T, et al. Development of Pure Hydrogen Production/Supply System for PEFC Using CO Selective Adsorbent and Metal Hydride[C]. Conference of the JIE, 2009: 252–253

[24]

Fujisawa A, Miura S. Development of Pure Hydrogen Production/Supply System for PEFC Using CO Selective Adsorbent and Metal Hydride[C]. Conference of HESS, Japan, 2009

[25]

Dunikov D, Borzenko V, Blinov D, et al. Biohydrogen Purification Using Metal Hydride Technologies[J]. Int. J. Hydrogen Energy, 2016, 41: 21 787-21 794.

[26]

Libowitz Hayes H, Gibb T. The System Zirconium-Nickel and Hydrogen[J]. J. Phys. Chem., 1958, 62: 76-79.

[27]

Justi E W, Ewe H H, Kalberlah A W, et al. Electrocatalysis in the Nickel-Titanium System[J]. Energy Conversion, 1970, 183–187

[28]

Ayari M, Ghodbane O, Abdellaoui M. Electrochemical Study of the Reversible Hydrogen Storage in Ceti2 Cr4 Ni5 -Based Metal Hydride Alloys[J]. Int. J. Hydrogen Energy, 2016, 41(41): 18 582-18 591.

[29]

Reilly J J, Wiswal H W. Formation and Properties of Iron Titanium Hydride[J]. Inorg. Chem., 1974: 218–222

[30]

Noreus D, Werner P, Alasafi K, et al. Structural Studies of TiNiH[J]. Int. J. Hydrogen Energy, 1985, 10(7–8): 547-550.

[31]

Srinivas G, Sankaranarayanan V, Ramaprabhu S. Diffusion of Hydrogen in Cubic Laves Phase Ho1−xMmxCo2Ho1−xMmxCo2 (x=0, 0.2 and 0.4) Alloys[J]. Int. J. Hydrogen Energy, 2007, 32(14): 2 965-2 970.

[32]

Kandavel M, Ramaprabhu S. Hydrogen Solubility and Diffusion Studies of Zr-Based AB2 Alloys and Sol-Gel Encapsulated AB2 Alloy Particles[J]. Intermetallics, 2007, 15(7): 968-975.

[33]

Van Vucht J, Kuijpers F, Bruning H. Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds[J]. Philips Res. Rep., 1970, 25: 133-140.

[34]

Lundin CE, Lynch FE. Solid-State Hydrogen Storage Materials for Application to Energy Needs[R]. Rept. AFSOR, F44620-74-C0020, Denver Res. Inst., Jan., 1975

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/