Photoluminescence and Ce3+→Tb3+→Eu3+ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum

Jianhua Huang , Nan Chen , Xiaojing Wang , Guoping Du , Aisheng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 33 -43.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 33 -43. DOI: 10.1007/s11595-021-2375-0
Advanced Materials

Photoluminescence and Ce3+→Tb3+→Eu3+ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum

Author information +
History +
PDF

Abstract

Ce3+/Tb3+ co-doped and Ce3+/Tb3+/Eu3+ tri-doped β-NaYF4 photoluminescent microcrystals using oleic acid as surfactant were synthesized using the solvothermal method. Their microstructural characteristics and photoluminescence properties were investigated in detail. They have the shape of hexagonal prism bipyramids with uniform particle size, which decreases with the concentrations of Tb3+ and Eu3+. The energy transfer processes of both the Ce3+→Tb3+ and the Ce3+→Tb3+→Eu3+ were systematically studied. Compared with Eu3+ or Tb3+ single-doped β-NaYF4 microcrystals, the sensitization by Ce3+ for the photoluminescence of Tb3+ and Eu3+ leads to a broad excitation spectral bandwidth in the ultraviolet (UV) range. Meanwhile, the corresponding optical absorption efficiency is greatly enhanced. High energy transfer efficiencies have been observed from Ce3+ to Tb3+ and from Tb3+ to Eu3+.

Keywords

lanthanide doped β-NaYF4 / photoluminescence / energy transfer / broad excitation spectrum / solvothermal method

Cite this article

Download citation ▾
Jianhua Huang, Nan Chen, Xiaojing Wang, Guoping Du, Aisheng Zhang. Photoluminescence and Ce3+→Tb3+→Eu3+ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(1): 33-43 DOI:10.1007/s11595-021-2375-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wen D, Shi J. A Novel Narrow-Line Red Emitting Na2Y2B2O7:Ce3+, Tb3+, Eu3+ Phosphor with High Efficiency Activated by Terbium Chain for Near-UV White LEDs[J]. Dalton Trans., 2013, 42(47): 16 621-16 629.

[2]

Jia Y, Lu W, Guo N, et al. Spectral Tuning of the n-UV Convertible Oxynitride Phosphor: Orange Color Emitting Realization via an Energy Transfer Mechanism[J]. Phys. Chem. Chem. Phys.: PCCP, 2013, 15(33): 13 810-13 813.

[3]

Santana-Alonso A, Yanes A C, Méndez-Ramos J, et al. Sol-gel Transparent Nano-Glass-Ceramics Containing Eu3+-Doped NaYF4 Nanocrystals[J]. J. Non-Cryst. Solids, 2010, 356(18–19): 933-936.

[4]

Wang L, Li Y. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Muticolor Luminescent Materials[J]. Nano Lett., 2006, 6(8): 1 645-1 649.

[5]

Li C, Zhang C, Hou Z, et al. β. J. Phys. Chem. C, 2009, 113(6): 2 332-2 339.

[6]

Li Z, Zhang Y, Jiang S. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles[J]. Adv. Mater., 2008, 20(24): 4 765-4 769.

[7]

He M, Huang P, Zhang C, et al. Phase- and Size-Controllable Synthesis of Hexagonal Upconversion Rare-Earth Fluoride Nanocrystals through an Oleic Acid/Ionic Liquid Two-Phase System[J]. Chem.-A Eur. Journal, 2012, 18(19): 5 954-5 969.

[8]

Palilla F C, Levine A K. YVO4:Eu: A Highly Efficient, Red-Emitting Phosphor for High Pressure Mercury Lamps[J]. Appl. Opt., 1966, 5(9): 1 467-1 468.

[9]

Zhang X, Zhou L, Pang Q, et al. Tunable Luminescence and Ce3+→Tb3+→Eu3+ Energy Transfer of Broadband-Excited and Narrow Line Red Emitting Y2SiO5:Ce3+, Tb3+, Eu3+ Phosphor[J]. J. Phys. Chem. C, 2014, 18(14): 7 591-7 598.

[10]

Jiang G, Wei X, Chen Y, et al. Luminescent La2O2S:Eu3+ Nanoparticles as Non-Contact Optical Temperature Sensor in Physiological Temperature Range[J]. Mater. Lett., 2015, 143: 98-100.

[11]

Zhao Y, Rabouw F T, Van Puffelen T, et al. Lanthanide-Doped CaS and SrS Luminescent Nanocrystals: A Single-Source Precursor Approach for Doping[J]. J. Am. Chem. Soc., 2014, 136(47): 16 533-16 543.

[12]

Li Y, Zhou S, Chen Z, et al. Luminescence Properties of Br-Doped ZnS Nanoparticles Synthesized by a Low Temperature Solid-State Reaction Method[J]. Ceram. Int., 2013, 39(5): 5 521-5 525.

[13]

Tang L, Gui W, Ding K, et al. Ion Exchanged YVO4: Eu3+ Nanocrystals and Their Strong Luminescence Enhanced by Energy Transfer of Thenoyltrifluoroacetone Ligands[J]. J. Alloys Compd., 2014, 590: 277-282.

[14]

Ji L, Chen N, Du G, et al. Synthesis and Luminescence of Y2O3:Eu3+ Inorganic-Organic Hybrid Nanostructures with Thenoyltrifluoroacetone[J]. Ceram. Int., 2014, 40(2): 3 117-3 122.

[15]

Zhan Y, Du G, Chen N, et al. Photoluminescence Properties of YVO4: Eu3+, Ba2+ Nanoparticles Prepared by an Ion Exchange Method[J]. Mater. Sci. Semicond. Proc., 2016, 41: 233-239.

[16]

Zong L, Xu P, Ding Y, et al. Y2O3:Yb3+/Er3+ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence [J]. Small, 2015, 11(23): 2 768-2 773.

[17]

Yu W, Wang X, Chen N, et al. A Strategy to Prepare Highly Redispersible and Strongly Luminescent α-NaYF4: Eu3+ Hybrid Nanostructures with Multi-Channel Excitation[J]. CrystEngComm, 2014, 16(15): 3 214-3 221.

[18]

He Y, Chen N, Du G. Synthesis of LaOF:Eu3+ Nanoparticles with Strong Luminescence Enhanced by Organic Ligands[J]. J. Am. Ceram. Soc., 2014, 97(6): 1 931-1 936.

[19]

Yang Y, Liu B, Tang L, et al. Ion Exchanged LaF3:Tb3+ Based Inorganic-Organic Hybrid Nanostructures and Their Strong Luminescence[J]. Mater. Sci. Semicond. Proc., 2015, 30: 513-517.

[20]

Xie R, Hirosaki N, Suehiro T, et al. A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes[J]. Chem. Mater., 2006, 18(23): 5 578-5 583.

[21]

Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity [J]. Angewandte Chemie, 2011, 50(34): 7 754-7 775.

[22]

Shen J, Sun L, Yan C. Luminescent Rare Earth Nanomaterials for Bioprobe Applications[J]. Dalton Trans., 2008, 42: 5 687-5 697.

[23]

Heer S, Kömpe K, Güdel H-U, et al. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals[J]. Adv. Mater., 2004, 16(23–24): 2 102-2 105.

[24]

Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence[J]. Adv. Funct. Mater., 2006, 16(18): 2 324-2 329.

[25]

Krämer K W, Biner D, Frei G, et al. Hexagonal Sodium Yttrium Fuoride Based Green and Blue Emitting Upconversion Phosphors[J]. Chem. Mater., 2004, 16(7): 1 244-1 251.

[26]

Reddy K N, Jafaruddin M. Decay Behaviour of NaYF4:Gd3+ Phosphors [J]. J. Mater. Sci. Lett., 1983, 2: 296-298.

[27]

Blasse G. Optical Electron Transfer Between Metal Ions and its Consequences[J]. Struct. Bond., 1991, 76: 153-187.

[28]

Fischer S, Baur F, Jüstel T. Suppression of Metal-to-Metal Charge Transfer Quenching in Ce3+ and Eu3+ Comprising Garnets by Core-Shell Structure [J]. J. Lumin., 2018, 203: 467-472.

[29]

Zhao B, Shen D, Tan Q, et al. Morphology-Controllable Synthesis, Energy Transfer and Luminescence Properties of Ce3+/Tb3+/Eu3+-Doped CaF2 Microcrystals[J]. J. Mater. Sci., 2017, 52(10): 5 857-5 870.

[30]

Zhang X, Gong M. Photoluminescence and Energy Transfer of Ce3+, Tb3+, and Eu3+ Doped KBaY(BO3)2 as Near-Ultraviolet-Excited Color-Tunable Phosphors[J]. Indust. & Eng. Chem. Res., 2015, 54(31): 7 632-7 639.

[31]

Zhou J, Xia Z. Luminescence Color Tuning of Ce3+, Tb3+ and Eu3+ Co-doped and Tri-Doped BaY2Si3O10 Phosphors via Energy Transfer[J]. J. Mater. Chem. C, 2015, 3(29): 7 552-7 560.

[32]

Yu Y, Lin B, Li X. Hydrothermal Synthesis of V-Cr-Al-O Nanospheres and Their Effect on Decomposition of Ammonium Perchlorate[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(6): 1 460-1 462.

[33]

Tu D, Liu Y, Zhu H, et al. Breakdown of Crystallographic Site Symmetry in Lanthanide-Doped NaYF4 Crystals[J]. Angewandte Chemie Int. Ed., 2013, 52(4): 1 128-1 133.

[34]

Zhang X, Fan X, Qiao X, et al. NaGdF4:Ce3+ and (Ce,Gd)F3 Nanoparticles: Hydrothermal Synthesis and Luminescence Properties [J]. Mater. Chem. Phys., 2010, 121(1–2): 274-279.

[35]

Wang F H Y L C S, et al. Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping[J]. Nature, 2010, 463(7284): 1 061-1 065.

[36]

Kim S Y, Woo K, Lim K, et al. Highly Bright Multicolor Tunable Ultrasmall β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 Core/Shell Nanocrystals[J]. Nanoscale, 2013, 5(19): 9 255-9 263.

[37]

Wang L, Li Y. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals[J]. Chem. Mater., 2007, 19: 727-734.

[38]

Ding M, Zhang H, Chen D, et al. Color-Tunable Luminescence, Energy Transfer and Temperature Sensing Behavior of Hexagonal NaYF4:Ce3+/Tb3+/Eu3+ Microcrystals[J]. J. Alloys Compd., 2016, 672: 117-24.

[39]

Huignard A, Buissette V R, Franville A -C, et al. Emission Processes in YVO4:Eu Nanoparticles[J]. J. Phys. Chem. B, 2003, 107(28): 6 754-6 759.

[40]

Mai H, Zhang Y, Si R, et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc., 2006, 128(19): 6 426-6 436.

[41]

Blasse G. Energy Transfer from Ce3+ to Eu3+ in (Y, Gd)F3[J]. Phys. Status Solidi A, 1983, 75(1): K41-K43.

[42]

Zhang L, Wang G Z, Dong P T, Liu X, Lin J. LaGaO3: A (A = Sm3+ and/or Tb3+) as Promising Phosphors for Field Emission Displays[J]. J. Mater. Chem., 2008, 18(2): 221-228.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/