Structural and Magnetic Studies of Ga-doped Yttrium Iron Garnet

Khozima Hamasha , Qassem I. Mohaidat , Mahdi Lataifeh , Ibrahim Bsoul , Sami H. Mahmood

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 13 -21.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 13 -21. DOI: 10.1007/s11595-021-2372-3
Advanced Materials

Structural and Magnetic Studies of Ga-doped Yttrium Iron Garnet

Author information +
History +
PDF

Abstract

Ga-doped Yttrium Iron Garnet (Y3Ga xFe5−xO12, Ga:YIG) was prepared by solid state reaction method and sintering at 1 300 °C. Rietveld analysis of X-ray diffraction patterns indicated that all samples crystallized in a single cubic structure (space group Ia-3d) with decreasing lattice constant as Ga concentration increased. SEM surface micrograph images of YIG samples showed highly compacted grains with small reduction in the grain size with increasing Ga concentration. Raman spectroscopy measurements confirmed the replacement of Fe3+ ions by Ga3+ ions in the garnet structure was revealed by the observed blue shifts in Raman spectra. The saturation magnetization decreased from 28.2 to 4.98 emu g−1 with increasing x from 0.0 to 1.0 due to the preferential substitution of Ga3+ ions for Fe3+ ions at tetrahedral sites. Room temperature Mössbauer spectra for the samples revealed a reduction of the hyperfine field values for octahedral and tetrahedral sites, and the development of additional components with increasing Ga concentration. Analysis of the magnetic data and Mössbauer spectra confirmed that spin canting in the substituted garnets plays an important role in explaining the observed reduction of the saturation magnetization as x increased.

Keywords

rare earth iron garnet / structural characteristics / scanning electron microscope / raman spectroscopy / magnetic properties / mössbauer spectroscopy

Cite this article

Download citation ▾
Khozima Hamasha, Qassem I. Mohaidat, Mahdi Lataifeh, Ibrahim Bsoul, Sami H. Mahmood. Structural and Magnetic Studies of Ga-doped Yttrium Iron Garnet. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(1): 13-21 DOI:10.1007/s11595-021-2372-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gilleo MA. Wohlfarth P E. Ferromagnetic Insulators: Garnets. Ferromagnetic Materials, 1980 Amstedam: North-Holland.

[2]

Mahmood SH. Permanent Magnet Applications. in: S H Mahmood, I Abu-Aljarayesh (Eds.) Hexaferrite Permanent Magnetic Materials, Materials Research Forum[M]. PA: LLC, Millersville

[3]

Paoletti A. Physics of Magnetic Garnet, 1997 Amstrdam: North Holland.

[4]

Jha AR. Rare Earth Materials: Properties and Applications, 2001 Florida: CRC Press.

[5]

Lataifeh MS. Room Temperature Magnetization Measurements of Some Substituted Rare Earth Iron Garnets[J]. Applied Physics A, 2008, 92: 681-685.

[6]

Xu H, Yang H, Xu W, et al. Magnetic Properties of Bi-doped Y3Fe5O12 Nanoparticles[J]. Current Applied Physics, 2008, 8: 1-5.

[7]

Gilleo M, Geller S. Substitution for Iron in Ferrimagnetic Yttrium-Iron Garnet[J]. Journal of Applied Physics, 1958, 29: 380-381.

[8]

Gilleo M, Geller S. Magnetic and Crystallographic Properties of Substituted Yttrium-Iron Garnet, 3Y2O3· x M2O3·(5−x)Fe2O3[J]. Physical Review, 1958, 110: 73-78.

[9]

Mohaidat QI, Lataifeh M. The Structural and Magnetic Properties of Aluminum Substituted Yttrium Iron Garnet[J]. Materials Research, 2018, 21: e20 170 808.

[10]

Musa MA, Azis RS. Structural and Magnetic Properties of Yttrium Iron Garnet (YIG) and Yttrium Aluminum Iron Garnet (YAlG) Nanoferrite via Sol-gel Synthesis[J]. Results in Physics, 2017, 7: 1 135-1 142.

[11]

Bsoul I, Olayaan R. Structural and Magnetic Properties of Er3 Fe5−x GaxO12 Garnets[J]. Materials Research Express, 2019, 6: 076 114.

[12]

Geller S, Williams H J, Sherwood RC. Magnetic and Crystallographic Study of Neodymium-substituted Yttrium and Gadolinium Iron Garnets[J]. Physical Review, 1961, 123: 1 692-1 699.

[13]

Lataifeh M, Mohaidat QI. Structural, Mossbauer Spectroscopy, Magnetic Properties, and Thermal Measurements of Y3−xDyxFe5O12[J]. Chinese Physics B, 2018, 27: 107 501.

[14]

Shannon RD. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallographica A, 1976, 32: 751-767.

[15]

Patel SKS, Lee J-H. Effects of Isovalent Substitution on Structural and Magnetic Properties of Nanocrystalline Y3−xGdxFe5O12 (0 ⩽ x ⩽ 3) Garnets[J]. Journal of Magnetism and Magnetic Materials, 2018, 452: 48-54.

[16]

Rueden CT, Schindelin J. ImageJ2: ImageJ for the Next Generation of Scientific Image Data[J]. BMC Bioinformatics, 2017, 18: 1.

[17]

Brahma M, Aakansha Gaikwad VM, Ravi S. Investigation of Structural, Magnetic and Dielectric Properties of Al-doped Samarium Iron Garnet[J]. Applied Physics A, 2019, 125: 333.

[18]

Liu H, Yuan L. Structure, Optical Spectroscopy Properties and Thermochromism of Sm3Fe5O12 Garnets[J]. Journal of Materials Chemistry C, 2016, 4: 10 529-10 537.

[19]

Aakansha Ravi S. Structural, Magnetic and Dielectric Properties of Cr Substituted Yttrium Iron Garnets[J]. Journal of the American Ceramic Society, 2018, 101: 5 046-5 060.

[20]

Peña-Garcia R, Delgado A. The Synthesis of Single-phase YIG Doped Zinc and Some Structural and Magnetic Properties[J]. Materials Research Express, 2017, 4: 016 103.

[21]

Fernandez-Garcia L, Suarez M, Menendez JL. Synthesis of Mono and Multidomain YIG Particles by Chemical Coprecipitation or Ceramic Procedure[J]. Journal of Alloys and Compounds, 2010, 495: 196-199.

[22]

Grunberg P, Koningstein JA, Van Uitert LG. Optical Phonons in Iron Garnets[J]. Journal of the Optical Society of America B, 1971, 61(12): 1 613-1 617.

[23]

Khanra S, Bhaumik A. Structural and Magnetic Studies of Y3Fe5−5xMo5xO12[J]. Journal of Magnetism and Magnetic Materials, 2014, 369: 14-22.

[24]

Mohaidat QI, Lataifeh M. Structural, Mössbauer Effect, Magnetic, and Thermal Properties of Gadolinium Erbium Iron Garnet System Gd3−xErxFe5O12[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30: 2 135-2 141.

[25]

Geller S, Cape JA. Gallium-substituted Yttrium Iron Garnet[J]. Physical Review, 1966, 148: 522-524.

[26]

Lataifeh M, Lehlooh AF, Mahmood S. Mössbauer Spectroscopy of Al Substituted Fe in Holmium Iron Garnet[J]. Hyperfine Interactions, 1999, 122: 253-258.

[27]

Lataifeh M, Mahmood S, Thomas M. Mössbauer Spectroscopy Study of Substituted Rare-earth Iron Garnets at Low Temperature[J]. Physica B, 2002, 321: 253-258.

[28]

Aneesh Kumar KS, Bhowmik RN, Mahmood SH. Role of pH Value During Chemical Reaction, and Site Occupancy of Ni2+ and Fe3+ Ions in Spinel Structure for Tuning Room Temperature Magnetic Properties in Ni1.5Fe1.5O4 Ferrite[J]. Journal of Magnetism and Magnetic Materials, 2016, 406: 60-71.

[29]

Mahmood SH, Saleh AS. Mössbauer Study of the Alloy System Fe-Al1−xCox[J]. Journal of Magnetism and Magnetic Materials, 1989, 82: 63-66.

[30]

Vandormael D, Grandjean F. Mössbauer Spectral Evidence for Rhombohedral Symmetry in R3Fe5O12 Garnets with R= Y, Eu and Dy[J]. Journal of Physics: Condensed Matter, 2001, 13: 1 759-1 772.

[31]

Pollmann J, Rüter H, Gerdau E. The Temperature Dependence of the Hyperfine Parameters of YIG Below the Curie Point[J]. Hyperfine Interactions, 1999, 122: 353-364.

[32]

Waerenborgh J, Rojas D. Defect Formation in Gd3Fe5O12-based Garnets: A Mössbauer Spectroscopy Study[J]. Materials Letters, 2004, 58: 3 432-3 436.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/