In-situ Synthesis and Oxidation Resistance of Sialon/SiC Composite Ceramics Applied as Solar Absorber

Xiaohong Xu , Dongbin Wang , Zhenggang Rao , Jianfeng Wu , Yang Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 6 -12.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (1) : 6 -12. DOI: 10.1007/s11595-021-2371-4
Advanced Materials

In-situ Synthesis and Oxidation Resistance of Sialon/SiC Composite Ceramics Applied as Solar Absorber

Author information +
History +
PDF

Abstract

Sialon/SiC composites were synthesized in situ from SiC, α-Si3N4, AlN, calcined bauxite, quartz and Y2O3 via layered buried sintering at different temperatures (1 540–1 640 °C). The results showed that the O’-sialon/SiC sample with 60 wt% silicon carbide sintered at 1 600 °C exhibited excellent mechanical properties, with apparent porosity of 16.01%, bulk density of 2.06 g·cm−3, bending strength of 52.63 MPa, and thermal expansion coefficient of 5.83×10−6 °C−1. The oxide film formed on the surface was linked closely to O’-sialon, so the oxide film was not easily broken. After 100 h oxidization, the sample surface was smoother and denser, with oxidation weight gain rate 23.6 mg/cm2 and oxidation rate constant 2.0 mg2·cm−4·h−1. Therefore, the sample had the excellent high-temperature oxidation resistance. It was confirmed that the in-situ sialon/SiC composites could be a promising candidate for solar absorber owing to its high-temperature oxidation resistance.

Keywords

sialon/SiC composites / high-temperature oxidation resistance / solar absorber

Cite this article

Download citation ▾
Xiaohong Xu, Dongbin Wang, Zhenggang Rao, Jianfeng Wu, Yang Zhou. In-situ Synthesis and Oxidation Resistance of Sialon/SiC Composite Ceramics Applied as Solar Absorber. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(1): 6-12 DOI:10.1007/s11595-021-2371-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behar O, Khellaf A, Mohammedi K. A Review of Studies on Central Receiver Solar Thermal Power Plants[J]. Renew. Sust. Energ. Rev., 2013, 23: 12-39.

[2]

Fend T. High Porosity Materials as Volumetric Receivers for Solar Energetics[J]. Opt. Appl., 2010, 40(2010): 271-284.

[3]

Fend T, Hoffschmidt B, Pitz-Paal R, et al. Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties[J]. Nat. Energy, 2004, 29(5–6): 823-833.

[4]

Hoffschmidt B, Téllez FM, Valverde A, et al. Performance Evaluation of the 200-kWth HiTRec- II Open Volumetric Air Receiver[J]. J. Sol Energy Eng., 2003, 125(1): 87-94.

[5]

Yang WL, SHI ZQ. Thermal Shock and Oxidation Resistances of SiC Composite Ceramic Sheath for Immersion Herter[J]. J. Chin. Ceram. Soc., 2014, 42(6): 698-702.

[6]

Riedel R, Passing G, Schonfelder H, et al. Synthesis of Dense Silicon-Based Ceramics at Low Temperature[J]. Nat., 1992, 355: 714-717.

[7]

Oynama Y, Kamigaito O. Research Progress and Application of Sialon-based Ceramics[J]. J. App1. Phys., 1971, 10: 1 637-1 640.

[8]

Seniz RKA, Turan S, Gencoglu PD, et al. Effect of SiC Addition on the Thermal Diffusivity of Sialon Ceramics[J]. Ceram. Int., 2017, 16: 13 469-13 474.

[9]

Xu XH, Song J, Wu JF, et al. Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(1): 16-25.

[10]

Xu XH, Lao XB, Wu JF, et al. Synthesis and Characterization of Al2O3/SiC Composite Ceramics via Carbothermal Reduction of Aluminosilicate Precursor for Solar Sensible Thermal Storage[J]. J. Alloy. Compd., 2016, 662: 126-137.

[11]

Xu XH, Zhang YX, Wu JF, et al. In Situ. Ceram. Int., 2016, 42: 17 503-17 512.

[12]

Xu XH, Rao ZG, Wu JF, et al. Preparation and Characterization of Mullite-silicon Carbide Heat Absorbing Ceramics for Solar Thermal Tower Plant[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2015, 30(1): 27-32.

[13]

XU XH, RAO ZG, WU JF, et al. In-situ. Sol Energy Mater. Sol Cells., 2014, 130: 257-263.

[14]

Wu JF, Zhang YX, XU XH, et al. Fabrication and Properties of in-situ Mullite-bonded Si3N4/SiC Composites for Solar Heat Absorber[J]. Mater. Sci. Eng, A, 2016, 652: 271-278.

[15]

Bu J, YU ZD, WANG RS, et al. Effect of Sintering Additive on the Properties of Sialon-SiC by Gelcasting[J]. China’s Refract., 2004, 13(4): 17-20.

[16]

Sui WM, Song RR. Oxidation Resistance Behaviors of β-sialon Bonded SiC Multiphase Materials[J]. J. Chin. Ceram. Soc., 2003, 31(9): 883-887.

[17]

Yang J, Xue XX, Hao L, et al. Influence of Process Parameters and Initial Composition on Synthesis of O’-Sialon Powder by Carbothermal Reduction-nitridation[J]. J. Chin. Ceram. Soc., 2003, 31(6): 575-580.

[18]

Zhang HJ, Li WJ, Zhong DC. Fabrication and thermodynamic Analysis of O’-Sialon-ZrO2-SiC Composites by Pressureless Sintering [J]. J. Chin. Ceram. Soc., 1999, 27(1): 42-47.

[19]

Ngoepe NN, Villiers D. The Thermal Expansion of 3C-SiC in TRISO Particles by High Temperature X-ray diffraction[J]. J. Nucl. Mater., 2013, 438(s1–3): 88-93.

[20]

CAO SH. Oxidation Behavior of β-Sialon/SiC Refractory Materials[J]. Chin. J. Nonferrous Met., 1994, 4(3): 78-81.

[21]

Ru HQ, ZHANG N, YU PZ, et al. Oxidation Behavior of Sialon/SiC Composites[J]. J. Northeast. Univ., 2001, 22(4): 417-419.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/