PDF
Abstract
To investigate the variation in the degree of polymerization calcium aluminium silicate hydrate (C-A-S-H) gel and its role in the evolution of the strength of waterglass slag binders, the compressive strength, hydration products, degree of hydration of the slag, and the degree of polymerization of C-A-S-H gels of binders were examined. The experimental results indicate that the pH of the pore solution increased with an increase in the Na2O concentration. However, mortar with an optimum compressive strength value of 81.0 MPa at 28 d was obtained when water glass modulus was 1.5. The main hydration product is a C-A-S-H gel for which the quantity and the degree of polymerization depend strongly on the Na2O concentration; for a given range, both increase with increasing Na2O concentration, thus yielding an enhanced strength. A further increase in the Na2O concentration continuously increases the quantity of C-A-S-H gels while drastically reducing the degree of polymerization. The positive effect of the former is counteracted by the adverse effect of the latter, ultimately, leading to a decreased strength. Furthermore, we reveal that the degree of polymerization for C-A-S-H gels may be affected by pH, through a series of complex chemical reactions.
Keywords
Na2O concentration
/
compressive strength
/
C-A-S-H gels
/
degree of hydration
/
degree of polymerization
Cite this article
Download citation ▾
Qing Liu, Jiakang Zhang, Yuewei Su, Xianjun Lü.
Variation in Polymerization Degree of C-A-S-H Gels and Its Role in Strength Development of Alkali-activated Slag Binders.
Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(6): 871-879 DOI:10.1007/s11595-021-2281-z
| [1] |
Ozbay E, Erdemir M, Durmuş HI. Utilization and Efficiency of Ground Granulated Blast Furnace Slag on Concrete Properties-A Review[J]. Constr. Build. Mater., 2016, 105(15): 423-434.
|
| [2] |
Li GN, Wang BM, Liu H. Properties of Alkali-activated Yellow River Sediment-slag Composite Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 118-125.
|
| [3] |
Rashad AM, Zeedan SR, Hassan AA. Influence of the Activator Concentration of Sodium Silicate on the Thermal Properties of Alkali-activated Slag Pastes[J]. Constr. Build. Mater., 2016, 102(2): 811-820.
|
| [4] |
Ben HM, Saout GL, Winnefeld F, et al. Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-furnace Slags[J]. Cem. Concr. Res., 2011, 41(3): 301-310.
|
| [5] |
Gebregziabiher BS, Thomas R, Peethamparan S. Very Early-age Reaction Kinetics and Microstructural Development in Alkali-Activated Slag[J]. Cem. Concr. Compos., 2015, 55(5): 91-102.
|
| [6] |
Xu G, He HY, He YB. Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(5): 1 186-1 192.
|
| [7] |
Lee NK, Lee HK. Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature[J]. Constr. Build. Mater., 2013, 47(5): 1 201-1 209.
|
| [8] |
Wang JX, Lyu XJ, Wang LY, et al. Influence of the Combination of Calcium Oxide and Sodium Carbonate on the Hydration Reactivity of Alkali-activated Slag Binders[J]. J. Cleaner Prod., 2018, 171(1): 622-629.
|
| [9] |
Chi M. Effects of Dosage of Alkali-Activated Solution and Curing Conditions on the Properties and Durability of Alkali-activated Slag Concrete[J]. Constr. Build. Mater., 2012, 35(1): 2 240-2 245.
|
| [10] |
Brough AR, Atkinson A. Sodium Silicate-Based, Alkali-Activated Slag Mortars: Part I. Strength, Hydration and Microstructure[J]. Cem. Concr. Res., 2002, 32(6): 865-879.
|
| [11] |
Wang SD, Scrivener KL, Pratt PL. Factors Affecting the Strength of Alkali-Activated Slag[J]. Cem. Concr. Res., 1994, 24(6): 1033-1043.
|
| [12] |
Yang KH, Song JK, Ashour AF, et al. Properties of Cementless Mortars Activated by Sodium Silicate[J]. Constr. Build. Mater., 2008, 22(9): 1 981-1 989.
|
| [13] |
Saly F, Guo LP, Ma R, et al. Properties of Steel Slag and Stainless Steel Slag as Cement Replacement Materials: A Comparative Study[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 444-1 451.
|
| [14] |
Richardson IG, Groves GW. Models for The Composition and Structure of Calcium Silicate Hydrate (C-S-H) Gel in Hardened Cement Pastes[J]. Cem. Concr. Res., 1992, 22(6): 1 001-1 010.
|
| [15] |
Fernandez-Jimenez A, Puertas F, Sobrados I, et al. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator[J]. J. Am. Ceram. Soc., 2003, 86(8): 1 389-1 394.
|
| [16] |
Song S, Jennings HM. Pore Solution Chemistry of Alkali-activated Ground Granulated Blast-furnace Slag[J]. Cem. Concr. Res., 1999, 2(29): 159-170.
|
| [17] |
Wang JX, Lyu XJ, Wang LY, et al. Effect of Anhydrite on the Hydration of Calcium Oxide-activated Ground Granulated Blast Furnace Slag Binders[J]. Sci. Adv. Mater., 2017, 9(12): 2 214-2 222.
|
| [18] |
Chen P, Zhang SM, Yang HM, et al. Effects of Curing Temperature on Rheological Behaviour and Compressive Strength of Cement Containing GGBFS[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(5): 1 155-1 162.
|
| [19] |
Aydin S, Baradan B. Effect of Activator Type and Content on Properties of Alkali-activated Slag Mortars[J]. Compos. Part. B-Eng., 2014, 57(3): 166-172.
|
| [20] |
Zhang L, Chen B. Hydration and Properties of Slag Cement Activated by Alkali and Sulfate[J]. J. Mater. Civ. Eng., 2017, 29(9): 1-8.
|
| [21] |
Ravikumar D, Neithalath N. Effects of Activator Characteristics on the Reaction Product Formation in Slag Binders Activated Using Alkali Silicate Powder and NaOH[J]. Cem. Concr. Compos., 2012, 34(7): 809-818.
|
| [22] |
Song S, Sohn D, Jennings HM, et al. Hydration of Alkali-activated Ground Granulated Blast Furnace Slag[J]. J. Mater. Sci., 2000, 35: 249-257.
|
| [23] |
Jin F, Gu K, Al-Tabbaa A. Strength and Hydration Properties of Reactive MgO-activated Ground Granulated Blast Furnace Slag Paste[J]. Cem. Concr. Compos., 2015, 57: 8-16.
|
| [24] |
Buchwald A, Hilbig H, Kaps C. Alkali-activated Metakaolin-slag blends-performance and Structure in Dependence of Their Composition[J]. J. Mater. Sci., 2017, 42(9): 3 024-3 032.
|
| [25] |
Schneider J, Cincotto MA, Panepucci H. 29Si and 27Al High-resolution NMR Characterization of Calcium Silicate Hydrate Phases in Activated Blast-furnace Slag Pastes[J]. Cem. Concr. Res., 2001, 31(7): 993-1 001.
|
| [26] |
Manzano H, Dolado JS, Griebel M, et al. A Molecular Dynamics Study of the Aluminosilicate Chains structure in Al-Rich Calcium Silicate Hydrated (C-S-H) Gels[J]. Phys. Status Solidi A., 2010, 205(6): 1 324-1 329.
|
| [27] |
Myers RJ, Bernal SA, Gehman JD, et al. The Role of Al in Cross-linking of Alkali-activated Slag Cements[J]. J. Am. Ceram. Soc., 2014, 98(3): 996-1 004.
|
| [28] |
Hilbig H, Buchwald A. The Effect of Activator Concentration on Reaction Degree and Structure Formation of Alkali-activated Ground Granulated Blast Furnace Slag[J]. J. Mater. Sci., 2006, 41(19): 6 488-6 491.
|
| [29] |
Rejmak P, Dolado JS, Stott MJ, et al. 29Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrate[J]. J. Phys. Chem. C., 2012, 116(17): 9 755-9 761.
|
| [30] |
Puertas F, Palacios M, Manzano H, et al. A Model for the C-A-S-H gel Formed in Alkali-activated Slag Cements[J]. J. Eur. Ceram. Soc., 2011, 31(12): 2 043-2 056.
|
| [31] |
Burciaga-Diaz O, Escalante-Garcia JI. Structure, Mechanisms of Reaction, and Strength of An Alkali-Activated Blast-furnace Slag[J]. J. Am. Ceram. Soc., 2013, 96(12): 3 939-3 948.
|
| [32] |
Sun GK, Young JF, Kirkpatrick RJ. The Role of Al in C-S-H: NMR, XRD, and Compositional Results for Precipitated Samples[J]. Cem. Concr. Res., 2006, 36(1): 18-29.
|
| [33] |
Ding QJ, Yang J, Zhang GZ, et al. Effect of Magnesium on the C-S-H Nanostructure Evolution and Aluminate Phases Transition in Cement-Slag Blend[J], 2018, 33(1): 108-116.
|
| [34] |
Myers RJ, Bernal SA, Nicolas SR, et al. Generalized Structural Description of Calcium-sodium Aluminosilicate Hydrate Gels: The Crosslinked Substituted Tobermorite Model[J]. Langmuir., 2013, 29(17): 5 294-5 306.
|
| [35] |
Richardson IG, Groves GW. The Structure of the Calcium Silicate Hydrate Phases Present in Hardened Pastes of White Portland Cement/Blast-furnace Slag Blends[J]. J. Mater. Sci., 1997, 32(18): 4 793-4 802.
|
| [36] |
Taenzer R, Buchwald A, Stephan D. Effect of Slag Chemistry on the Hydration of Alkali-Activated Blast-furnace Slag[J]. Mater. Struct., 2015, 48(3): 629-641.
|
| [37] |
Bonaccorsi E, Merlino S, Kampf AR. The Crystal Structure of Tobermorite 14 Å (Plombierite), A C-S-H Phase[J]. J. Am. Ceram. Soc., 2005, 88(3): 505-512.
|
| [38] |
Andersen MD, Jakobsen HJ, Skibsted JR. Characterization of White Portland Cement Hydration and the C-S-H Structure in the Presence of Sodium Aluminate by 27Al and 29Si MAS NMR Spectroscopy[J]. Cem. Concr. Res., 2004, 34(5): 857-868.
|
| [39] |
Weng L, Sagoe-Crentsil K. Dissolution Processes, Hydrolysis and Condensation Reactions During Geopolymer Synthesis: Part I-Low Si/Al Ratio Systems[J]. J. Mater. Sci., 2007, 42: 2 997-3 006.
|
| [40] |
Yip CK, Lukey GC, Deventer JSJ. The Coexistence of Geopolymeric Gel and Calcium Silicate Hydrate at the Early Stage of Alkaline Activation[J]. Cem. Concr. Res., 2005, 35(9): 1 688-1 697.
|
| [41] |
Xu H, Deventer JSJ. The Geopolymerisation of Alumino-Silicate Minerals[J]. Int. J. Miner. Process., 2000, 59(3): 247-266.
|
| [42] |
Bakharev T. Resistance of Geopolymer Materials to Acid Attack[J]. Cem. Concr. Res., 2005, 35(4): 658-670.
|
| [43] |
Silva PD, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of Geopolymerization: Role of Al2O3 and SiO2[J]. Cem. Concr. Res., 2007, 37(4): 512-518.
|
| [44] |
Mccormick AV, Bell AT, Radke CJ. Influence of Alkali-metal Cations on Silicon Exchange and Si-29 Spin Relaxation in Alkaline Silicate Solutions[J]. J. Phys. Chem., 1989, 93(5): 1 737-1 741.
|
| [45] |
Kinrade SD, Swaddle TW. Silicon-29 NMR Studies of Aqueous Silicate Solutions. 2. Transverse 29Si Relaxation and The Kinetics and Mechanism of Silicate Polymerization[J]. Inorg. Chem., 1988, 27(23): 4 259-4 264.
|
| [46] |
Provis JL, Vlachos DG. Silica Nanoparticle Formation in The TPAOH-TEOS-H2O System: A Population Balance Model[J]. J. Phys. Chem. B, 2006, 110(7): 3 098-3 198.
|
| [47] |
White CE, Provis JL, Kearley GJ, et al. Density Functional Modelling of Silicate and Aluminosilicate Dimerisation Solution Chemistry[J]. Dalton Trans., 2011, 40(6): 1 348-1 355.
|
| [48] |
Schaffer CL, Thomson KT. Density Functional Theory Investigation into Structure and Reactivity of Prenucleation Silica Species[J]. J. Phys. Chem. C., 2008, 112(33): 12 653-12 662.
|