High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures

Kezhao Zhang , Zhenglong Lei , Yanbin Chen , Chunyan Yan , Qiang Fu , Yefeng Bao

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1116 -1121.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1116 -1121. DOI: 10.1007/s11595-020-2362-x
Metallic Material

High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures

Author information +
History +
PDF

Abstract

The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500, 650, 800, and 1 000 °C. The temperatures for tensile tests were selected according to the phase transformation sequence of Ti2AlNb-based alloys. At temperatures lower than the B2+O phase field (500 °C) and higher than the B2+O phase field (1 000 °C), the joints fracture in the base metal in ductile fracture mode. By contrast, the joints exhibit obvious high-temperature brittleness in the B2+O phase field (650 °C and 800 °C). Heat treatments were conducted with respect to the thermal history of tensile specimens. Intergranular microcracks along the grain boundary of B2 phase are found in the fusion zone after the heat treatments at 650 °C and 800 °C. The high-temperature brittleness at 650 °C and 800 °C is attributed to the B2→O transformation along the grain boundary. The stress concentration caused by the volume change of B2→O transformation also contributes to the high-temperature brittleness of laser welded Ti-22Al-25Nb joints.

Keywords

high-temperature tensile behavior / laser welding / Ti2AlNb-based alloys / phase transformation

Cite this article

Download citation ▾
Kezhao Zhang, Zhenglong Lei, Yanbin Chen, Chunyan Yan, Qiang Fu, Yefeng Bao. High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures. Journal of Wuhan University of Technology Materials Science Edition, 2021, 35(6): 1116-1121 DOI:10.1007/s11595-020-2362-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Zeng X. Dynamic Tensile Behavior and Constitutive Modeling of TC21 Titanium Alloy[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(3): 707-716.

[2]

Zhou L, Liu Y, Dong S, et al. Synthesis of Titanium Carbide Particle in Laser Melted-pool in situ[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34: 1 315-1 320.

[3]

Wang N, Chen Y, Liu S, et al. Corrosion Behavior of Cu/Ni Coatings on Ti-6Al-4V Alloy after Diffused Treatment[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2020, 35: 215-222.

[4]

Zhang J, Li S, Liang X, et al. Research and Application of Ti3Al and Ti2AlNb-based Alloys[J]. Chin. J. Nonferrous Met., 2010, 20(S1): 336-341.

[5]

Niu H, Chen Y, Zhang D, et al. Fabrication of A Powder Metallurgy Ti2AlNb-based Alloy by Spark Plasma Sintering and Associated Microstructure Optimization[J]. Mater. Des., 2016, 89: 823-829.

[6]

Boehlert C. Part III. The Tensile Behavior of Ti-Al-Nb O+ BCC Orthorhombic Alloys[J]. Metall. Mater. Trans. A, 2001, 32(8): 1 977-1 988.

[7]

Boehlert C, Miracle D. Part II. The Creep Behavior of Ti-Al-Nb O+ BCC Orthorhombic Alloys[J]. Metall. Mater. Trans. A., 1999, 30(9): 2 349-2 367.

[8]

Wang W, Zeng W, Xue C, et al. Microstructure Control and Mechanical Properties from Isothermal Forging and Heat Treatment of Ti-22Al-25Nb (at%) Orthorhombic Alloy[J]. Intermetallics, 2015, 56: 79-86.

[9]

Du Z, Jiang S, Zhang K, et al. The Structural Design and Superplastic Forming/diffusion Bonding of Ti2AlNb based Alloy for Four-layer Structure[J]. Mater. Des., 2016, 104: 242-250.

[10]

Cai X, Wang Y, Yang Z, et al. Transient Liquid Phase (TLP) Bonding of Ti2AlNb Alloy Using Ti/Ni Interlayer: Microstructure Characterization and Mechanical Properties[J]. J. Alloys Compd., 2016, 679: 9-17.

[11]

Li D, Hu S, Shen J, et al. Microstructure and Mechanical Properties of Laser-welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys[J]. J. Mater. Eng. Perform., 2016, 25(5): 1 880-1 888.

[12]

Wang G, Huang Y, Wang G, et al. Brazing of Ti2AlNb based Alloy with Amorphous Ti-Cu-Zr-Ni Filler[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2015, 30(3): 617-621.

[13]

Tan LJ, Yao ZK, Wang T, et al. Effect of Post-weld Heat Treatment On Microstructure and Properties of Electron Beam Welded Joint of Ti2Al-Nb/TC11[J]. J. Mater. Sci. Technol., 2011, 27(8): 1 315-1 320.

[14]

Zhang KZ, Lei ZL, Chen YB, et al. Microstructure Characteristics and Mechanical Properties of Laser-TIG Hybrid Welded Dissimilar Joints Of Ti-22Al-27Nb and TA15[J]. Opt. Laser Technol., 2015, 73: 139-145.

[15]

Chen X, Xie FQ, Ma TJ, et al. Microstructure Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy[J]. J. Alloys Compd., 2015, 646: 490-496.

[16]

Wang GQ, Zhao Y, Wu AP, et al. Microstructure and High-temperature Tensile Properties of Ti3Al Alloys Laser Welding Joint[J]. Chin. J. Nonferrous Met., 2007, 17(11): 1 803

[17]

Lei Z, Dong Z, Chen Y, et al. Microstructure and Tensile Properties of Laser Beam Welded Ti-22Al-27Nb Alloys[J]. Mater. Des., 2013, 46: 151-156.

[18]

Chen YB, Zhang KZ, Hu X, et al. Study on Laser Welding of a Ti-22Al-25Nb Alloy: Microstructural Evolution and High Temperature Brittle Behavior[J]. J. Alloys Compd., 2016, 681: 175-185.

[19]

Zhang KZ, Ni LC, Lei ZL, et al. In situ Investigation of the Tensile Deformation of Laser Welded Ti2AlNb Joints[J]. Mater. Charact., 2017, 123: 51-57.

[20]

Yin JM, Lu B, Li YL, et al. Electron Beam Welding of Ti2AlNb based Alloy Sheet[J]. Chin. J. Nonferr. Metal, 2010, 20: 325-330.

[21]

Liu XL, Wu SJ, Ji YP, et al. Ultrasonic Frequency Pulse Tungsten Inert Gas Welding of Ti2AlNb-based Alloy[J]. Rare Met, 2014, 38(4): 541

[22]

Kumpfert J, Kaysser WA. Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution[J]. Z Metal, 2001, 92(2): 128-134.

[23]

Raghavan V. Al-Nb-Ti (aluminum-niobium-titanium)[J]. J. Phase Equilib. Diffus., 2005, 26(4): 360-368.

[24]

Sadi F, Servant C. On the B2→O Phase Transformation in Ti-Al-Nb Alloys[J]. Mater. Sci. Eng., A, 2003, 346(1–2): 19-28.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/