Microstructure, Mechanical, and Thermal Properties of B4C-TiB2-SiC Composites Prepared by Reactive Hot-pressing

Yaoqin Cao , Qianglong He , Weimin Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1031 -1037.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1031 -1037. DOI: 10.1007/s11595-020-2352-z
Advanced Materials

Microstructure, Mechanical, and Thermal Properties of B4C-TiB2-SiC Composites Prepared by Reactive Hot-pressing

Author information +
History +
PDF

Abstract

B4C-TiB2-SiC composites with excellent properties were prepared by reactive hot-pressing using B4C, TiC, and Si powders as the raw materials. The phase transition process was investigated by heating the powder mixture to different temperatures and combined with XRD tests. TiB2 and SiC phases were synthesized through an in situ reaction, and the mechanical and thermal properties were improved simultaneously. Microstructure and mechanical properties were also studied, and the 60wt% B4C-21.6wt% TiB2-18.4wt% SiC composite showed a relative density of 99.1%, Vickers hardness of 34.6 GPa, flexural strength of 582 MPa, and fracture toughness of 5.08 MPa·m1/2. In addition, the values of thermal conductivity and thermal expansion coefficient were investigated, respectively.

Keywords

B4C-TiB2-SiC / reactive hot pressing / microstructures / mechanical properties / thermal properties

Cite this article

Download citation ▾
Yaoqin Cao, Qianglong He, Weimin Wang. Microstructure, Mechanical, and Thermal Properties of B4C-TiB2-SiC Composites Prepared by Reactive Hot-pressing. Journal of Wuhan University of Technology Materials Science Edition, 2021, 35(6): 1031-1037 DOI:10.1007/s11595-020-2352-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thévenot F. Boron Carbide-A Comprehensive Review[J]. J. Eur. Ceram. Soc., 1990, 6(4): 205-225.

[2]

Suri A, Subramanian C, Sonber J, et al. Synthesis and Consolidation of Boron Carbide: A Review[J]. Int. Mater. Rev., 2010, 55(1): 4-40.

[3]

Domnich V, Reynaud S, Haber RA, et al. Boron Carbide: Structure, Properties, and Stability under Stress[J]. J. Am. Ceram. Soc., 2011, 94(11): 3 605-3 628.

[4]

Zhang M, Yuan T, Li R, et al. Densification Mechanisms and Microstructural Evolution during Spark Plasma Sintering of Boron Carbide Powders[J]. Ceram. Int., 2018, 44(4): 3 571-3 579.

[5]

Lee H, Speyer RF. Pressureless Sintering of Boron Carbide[J]. J. Am. Ceram. Soc., 2003, 86(9): 1 468-1 473.

[6]

Huang SG, Vanmeensel K, Malek OJA, et al. Microstructure and Mechanical Properties of Pulsed Electric Current Sintered B4C-TiB2 Composites[J]. Mater. Sci. Eng. A., 2011, 528(3): 1 302-1 309.

[7]

Xu CM, Cai YB, Flodström K, et al. Spark Plasma Sintering of B4C Ceramics: The Effects of Milling Medium and TiB2 Addition[J]. Int. J. Refract. Met. Hard Mater., 2012, 30(1): 139-144.

[8]

Lv M, Chen W, Liu C. Fabrication and Mechanical Properties of TiB2/ZrO2 Functionally Graded Ceramics[J]. Int. J. Refract. Met. Hard Mater., 2014, 46: 1-5.

[9]

Zhang M, Zhang WK, Zhang YJ, et al. Fabrication, Microstructure and Mechanical Behavior of SiCw-B4C-Si Composite[J]. Mater. Sci. Eng. A., 2012, 552: 410-414.

[10]

Skorokhod V, Krstic VD. High Strength-High Toughness B4C-TiB2 Composites[J]. J. Mater. Sci. Lett., 2000, 19(3): 237-239.

[11]

He P, Dong S, Kan Y, et al. Microstructure and Mechanical Properties of B4C-TiB2 Composites Prepared by Reaction Hot Pressing using Ti3SiC2 as Additive[J]. Ceram. Int., 2016, 42(1): 650-656.

[12]

Yamada S, Hirao K, Yamauchi Y, et al. High Strength B4C-TiB2 Composites Fabricated by Reaction Hot-Pressing[J]. J. Eur. Ceram. Soc., 2003, 23(7): 1 123-1 130.

[13]

He QL, Wang AY, Liu C, et al. Microstructures and Mechanical Properties of B4C-TiB2-SiC Composites Fabricated by Ball Milling and Hot Pressing[J]. J. Eur. Ceram. Soc., 2018, 38(7): 2 832-2 840.

[14]

Moshtaghioun BM, Ortiz AL, García DG, et al. Toughening of Super-Hard Ultra-Fine Grained B4C Densified by Spark-Plasma Sintering via SiC Addition[J]. J. Eur. Ceram. Soc., 2013, 33(8): 1 395-1 401.

[15]

Moradkhani A, Baharvandi H. Mechanical Properties and Fracture Behavior of B4C-Nano/Micro SiC Composites Produced by Pressureless Sintering[J]. Int. J.Refract. Met. Hard Mater., 2018, 70: 107-115.

[16]

He QL, Xie JJ, Wang AY, et al. Effects of Boron Carbide on The Microstructures and Mechanical Properties of Reactive Hot-Pressed BxC-TiB2-SiC Composites[J]. Ceram. Int., 2019, 45(16): 19 650-19 657.

[17]

Tomlinson WJ, Jupe KN. Strength and Microstructure of Electro Discharge-Machined Titanium Diboride[J]. J. Mater. Sci. Lett., 1993, 12(6): 366-378.

[18]

Li WJ, Tu R, Goto T. Preparation of TiB2-SiC Eutectic Composite by An Arc-Melted Method and Its Characterization[J]. Mater. Trans., 2005, 46(11): 2504-2508.

[19]

Tu R, Hirayama H, Goto T. Preparation of ZrB2-SiC Composites by Arc Melting and Their Properties[J]. J. Ceram. Soc. Jpn., 2008, 116(1351): 431-435.

[20]

Zou J, Liu J, Zhao J, et al. A Top-Down Approach to Density ZrB2-SiC-BN Composites with Deeper Homogeneity and Improved Reliability[J]. Chem. Eng. J., 2014, 249: 93-101.

[21]

Yue X, Zhao S, Lu P, et al. Synthesis and Properties of Hot Pressed B4C-TiB2 Ceramic Composite[J]. Mater. Sci. Eng. A., 2010, 527(27–28): 7 215-7 219.

[22]

Huang S, Vanmeensel K, Biest OV, et al. In Situ Synthesis and Densification of Submicrometer-Grained IBiC-TiB2 Composites by Pulsed Electric Current Sintering[J]. J. Eur. Ceram. Soc., 2011, 31(4): 637-644.

[23]

Sahin FC, Apak B, Akin I, et al. Spark Plasma Sintering of B4C-SiC Composites[J]. Solid. State. Sci., 2012, 14(11–12): 1 660-1 663.

[24]

Du XW, Zhang ZX, Wang WM, et al. Microstructure and Properties of B4C-SiC Composites Prepared by Polycarbosilane-Coating/B4C Powder Route[J]. J. Eur. Ceram. Soc., 2014, 34(5): 1 123-1 129.

[25]

Zhou Y, Ni D, Kan Y, et al. Microstructure and Mechanical Properties of Reaction Bonded B4C-SiC Composites: The Effect of Polycarbosilane Addition[J]. Ceram. Int., 2017, 43(8): 5 887-5 895.

[26]

Zhang Z, Xu C, Du X, et al. Synthesis Mechanism and Mechanical Properties of TiB2-SiC Composites Fabricated with The B4C-TiC-Si System by Reactive Hot Pressing[J]. J. Alloy. Compd., 2015, 619: 26-30.

[27]

Xie Z. Structure Ceramics[M], 2011 Beijing: Tsinghua University Press. 486-496.

[28]

Königshofer R, Fürnsinn S, Steinkellner P, et al. Solid-State Properties of Hot-Pressed TiB2 Ceramics[J]. Int. J. Refract. Met. Hard Mater., 2005, 23(4–6): 350-357.

[29]

Sigl LS. Thermal Conductivity of Liquid Phase Sintered Silicon Carbide[J]. J. Eur. Ceram. Soc., 2003, 23(7): 1 115-1 122.

[30]

Zou J, Zhang G, Kan Y. Pressureless Densification and Mechanical Properties of Hafnium Diboride Doped with B4C: From Solid State Sintering to Liquid Phase Sintering[J]. J. Eur. Ceram. Soc., 2010, 30(12): 2 699-2 705.

[31]

Skaar EC, Croft WJ. Thermal Expansion of TiB2[J]. J. Am. Ceram. Soc., 1973, 56(1): 45

[32]

Munro RG. Material Properties of A Sintered Alpha-SiC[J]. J. Phy. Chem. Ref. Data., 1997, 26(5): 1 195-1 203.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/