Lithium Behavior in Salt-water System Explored by Molecular Dynamics Simulation

Yanfang Ma , Jianchuan Liu , Kanshe Li , Zhihong Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1016 -1020.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 35 ›› Issue (6) : 1016 -1020. DOI: 10.1007/s11595-020-2350-1
Advanced Materials

Lithium Behavior in Salt-water System Explored by Molecular Dynamics Simulation

Author information +
History +
PDF

Abstract

The molecular dynamics simulation method was adopted to study the transient characteristics of Li+, CO3 2−, and SO4 2− in Na+, K+, Li+, Cl, and SO4 2−/H2O system. The composition of Na+, K+, Li+, Cl, SO4 and CO3 was selected to optimize the initial structural model and conduct dynamic simulation. The mean azimuth shift and diffusion coefficient of Li+, CO3 2−, and SO4 2− in the system, the radial distribution function and potential energy between Li+ and −OW, SO4 2 and −OW as well as CO3 2 and −OW, and the dielectric constant of hydrogen bond were expounded and analyzed. At the same time, the Li enrichment behavior in the evaporation process of salt lake brine was analyzed based on the simulated data. The results show that the simulation results are in good agreement with the experimental values, which verifies that, compared with other ions, the crystallization of Li+ and SO4 2− occurs earlier after reaching saturation.

Keywords

salt lakes Li+ / CO3 2− / SO4 2− / MD / salt water system

Cite this article

Download citation ▾
Yanfang Ma, Jianchuan Liu, Kanshe Li, Zhihong Zhang. Lithium Behavior in Salt-water System Explored by Molecular Dynamics Simulation. Journal of Wuhan University of Technology Materials Science Edition, 2021, 35(6): 1016-1020 DOI:10.1007/s11595-020-2350-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lei J, Gong Q, Shang J, Chen Y, Yuan Q-H. Study on Synthesis and Porperties of Normal Spinel Structure LiMn2O4 for Lithium Ion-sieve Precursor[J]. Journal of Wuhan University(Neo-Confucianism), 2001, 47(6): 707-711.

[2]

Yang Z, Xiang L. Progress on the Extraction of Lithium fome the Salt Lake Brine[J]. Joumal of Salt and Chem jcal Industry, 2005, 234(6): 27-29.

[3]

Luo S, Zheng M. EXPLOITATION Actuality of Saline Lake Lithium Resources in TibetI[J]. Geology and Prospecting, 2004, 40(3): 11-14.

[4]

Gao F, Zheng M, Nie Z, Liu J, Song P. Brine Lithium Resource in the Salt Lake and Advances in Its Exploitation[J]. Acta Geoscientica Sinica, 2001, 32(4): 483-490.

[5]

Wang Y, Zheng M, Nie Z, Bu L, Gao F. 5 °C-Isothermal Evaporation Experiment of Autumn Brines from the Sodium Sulfate Subtype Zhabei Salt Lake in Tibet[J]. Acta Geoscientica Sinica, 2011, 32(4): 477-482.

[6]

Nie Z, Bu L, Zhen M, Zhang Y-S. Phase Chemistry Study on Brine from the Zabuye Carbonate-Type Salt Lake in Tibet[J]. Acta Geologica Sinica, 2010, 84(14): 587-592.

[7]

Ma Y, Zhang Z, Li K, Dong S, Fu Z, Hu T. Study on Li+ Enrichment Behavior of Sodium Sulfate in the Saline Lake Brine at Different Temperatures-as an Example Laguocuo Salt Lake Brines in Tibet[J]. Acta Geoscientica Sinica, 2016, 37(3): 307-312.

[8]

China Blue Star Changsha Design and Research Institute. A Potassium Sulfate Mixture Is Extracted from Lithium Potassium Sulfate with Sodium Chloride Flotation Method of Potassium Lithium Sulfate in the Mixture[P]. China: CN 102921553 A, 2012-11-23

[9]

Parmar H, Asada M, Kanazawa Y, Asakuma Y, Phan CM, Pareek V, Evans GM. In fluence of Microwaves on the Water Surface Tension[J]. Langmuir, 2014, 30: 9 875-9 879.

[10]

Park SW, Wake K, Watanabe S. Calculation Errors of the Electric Field Induced in Ahuman Body under Quasi-static Approximation Conditions[J]. IEEE Trans. Microwave Theory Tech., 2013, 61: 2 153-2 160.

[11]

Hirata A, Shiozawa T. Correlation of Maximum Temperature Increase and Peak SARinthe Human Head Due to Handset Antennas[J]. IEEE Trans. Microwave Theory Tech., 2003, 51: 1 834-1 841.

[12]

Gaiduk AP, Zhang C, Gygi F, Galli G. Structural and Electronic Properties of Aque-ous NaCl Solutions from ab Initio Molecular Dynamics Simulations with Hybrid Density Functionals[J]. Chem. Phys. Lett., 2014, 604: 89-96.

[13]

Zhou M, Hu Y, Liu J, Cheng K, Jia G-Z. Hydrogen Bonding and Transportation Properties of Water Confined in the Single-walled Carbon Nanotube in the Pulse-field[J]. Chemical Physics Letters, 2017, 686: 173-177.

[14]

Liu Y, Wang Q, Zhang L, Wu T. Dynamics and Density Profile of Water Innanotubes as One-dimensional Fluid[J]. Langmuir, 2005, 21: 12 025-12 030.

[15]

Chen Q, Wang Q, Liu YC, Wu T. The Effect of Hydrogen Bonds on Diffusion Mechanism of Water Inside Single-walled Carbon Nanotubes[J]. J. Chem. Phys., 2014, 140: 214507.

[16]

Tielrooij K, Van Der Post S, Hunger J, Bonn M, Bakker H. Anisotropic Water Reori-entation Around Ions[J]. J. Phys. Chem. B, 2011, 115: 12 638-12 647.

[17]

Tian W, Huang K. Animproved Experimental Set-up based on Ridged-Waveguide for Microwave Non-thermal Effects[J]. Instrum, 2011, 6: T02001.

[18]

Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-balanced, and Scalable Molecular Simulation[J]. Journal of Chemical Theory and Computation, 2008, 4: 435-447.

[19]

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. DevelopMent and Testing of a General Amber Force Field[J]. Journal of Computational Chemistry, 2004, 25: 1 157-1 174.

[20]

Fox T, Kollman PA. Application of the RESP Methodology in the Parametrization of Organic Solvents[J]. The Journal of Physical Chemistry, 1998, B102: 8 070-8 079.

[21]

Bayly CI, Cieplak P, Cornell W, Kollman PA. A Well-behaved Electrostatic Potential Based Method using Charge Restraints for Deriving Atomic Charges: The RESP Model[J]. The Journal of Physical Chemistry, 1993, 97: 10 269-10 280.

[22]

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method[J]. J. Chem. Phys., 1995, 103(19): 8 577-8 593.

[23]

Berendsen HJ, Postma JPM, Van Gunsteren WF, DiNola A, Haak J. Molecular Dynamics with Coupling to an External Bath[J]. J. Chem. Phys., 1984, 81: 3684.

[24]

Van Gunsteren WF, Berendsen H. A Leap-frog Algorithm for Stochastic Dynamics[J]. Mol. Simul., 1988, 1(3): 173-185.

[25]

Von Smoluchowski M. Zur Kinetischen Theorie Der Brownschen Molekularbewegung und Der Suspensionen[J]. Annalen Der Physik, 1906, 326: 756-780.

[26]

Desiraju GR, Steiner T. The Weak Hydrogen Bond: in Structural Chemistry and Biology[M]. Oxford University Press on Demand, 2001

[27]

Ishwor P, Narayan P A. Temperature Dependence of Diffusion Coefficient of Carbon Monoxide in Water: A Molecular Dynamics Study[J]. Journal of Molecular Liquids, 2014, 194: 77-84.

[28]

LI Yasha, LIU Zhipeng, HUA Xu, DAI Yaping, SHEN Xingru. Molecular Dynamics Simulation on Diffusion Behaviors of Small Molecule Acids and Polymer Acids in Oils[J]. Journalof Insulating Material, 2018, 51(9)

[29]

Migliorati V, Ballirano P, Gontrani L, et al. Crystal Polymorphism of Hexylammonium Chloride and Structural Properties of Its Mixtures with Water[J]. The Journal of Physical Chemistry B, 2012, 116(7): 2 104-2 113.

[30]

Kusalik PG, Bergman D, Laaksonen A. The Local Structure in Liquid Methylamine and Methylamine-water Mixtures[J]. J. Chem. Phys., 2000, 113(18): 8 036-8 046.

[31]

GR Desiraju, T Steiner. The Weak Hydrogen Bond, Structural Chemistryand Biology[J]. Oxford University Press on Demand, 2001

[32]

Muñoz-Santiburcio D, Wittekindt C, Marx D. Nanoconfinement Effects on Hydrated Excess Protons in Layered Materials[J]. Nat. Commun, 2013, 4: 2 349.

[33]

Cadogan SP, Maitland GC, Trusler JPM. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa[J]. J.Chem. Eng. Data, 2014, 59: 519-525.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/