Microstructure and Mechanical Strength Predictive Modeling in Al 5052-Trapezoidal Grooved SS 304 Explosive Cladding

S. Saravanan , K. Raghukandan

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 958 -966.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 958 -966. DOI: 10.1007/s11595-020-2342-1
Metallic Materials

Microstructure and Mechanical Strength Predictive Modeling in Al 5052-Trapezoidal Grooved SS 304 Explosive Cladding

Author information +
History +
PDF

Abstract

Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface. The process parameters viz, loading ratio, standoff distance and flyer plate thickness were varied based on the Taguchi analogy. The variation in the process parameters alters the kinetic energy dissipation and the deformation work performed at the interface, and dictates the interfacial wave amplitude and the mechanical strength of the dissimilar explosive clad. The optimum level of process parameters for attaining higher tensile and shear strength is computed by signal-to-noise ratio. Further, a mathematical model is developed for calculating tensile and shear strength of the clad, based on the regression analysis using statistical software Minitab-16, and the level of fit is determined by analysis of variance.

Keywords

explosive cladding / trapezoidal grooves / microstructure / optimization / strength

Cite this article

Download citation ▾
S. Saravanan, K. Raghukandan. Microstructure and Mechanical Strength Predictive Modeling in Al 5052-Trapezoidal Grooved SS 304 Explosive Cladding. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(5): 958-966 DOI:10.1007/s11595-020-2342-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Honarpisheh M, Asemabadi M, Sedighi M. Investigation of Annealing Treatment on the Interfacial Properties of Explosive-welded Al/Cu/Al Multilayer[J]. Mater Design., 2012, 37: 122-127.

[2]

Mandal NR. Aluminum Welding[M], 2002 Cambridge: Wood Head Publishing.

[3]

Grignon F, Benson D, Vecchio K S, et al. Explosive Welding of Aluminum to Aluminum: Analysis, Computations and Experiments[J]. Int. J. Impact Eng., 2004, 30(10): 1333-1351.

[4]

Findik F. Recent Developments in Explosive Welding[J]. Mater. Des., 32: 1 081–1 093

[5]

Saravanan S, Raghukandan K, Hokamoto K. Improved Microstructure and Mechanical Properties of Dissimilar Explosive Cladding by Mean of Interlayer Technique[J]. Arch. Civ. Mech. Eng., 2016, 16(4): 563-568.

[6]

Kahraman N, Gulenc B, Findik F. Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface[J]. J. Mater. Process. Tech., 2005, 169(2): 127-133.

[7]

Acarer M, Gulenc B, Findik F. The Influence of Some Factors on Steel/Steel Bonding Quality on Theie Characteristics of Explosive Welding Joints[J]. J. Mater Sci., 2004, 39(21): 6457-6466.

[8]

Mamalis AG, Vottea IN, Manolakos DE. Explosive Compaction/Cladding of Metal Sheathed/Superconducting Grooved Plates: FE Modeling and Validation[J]. Physica C, 2004, 408–410: 881-883.

[9]

LI X, MA H, SHEN Z. Research on Explosive Welding of Aluminum Alloy to Steel with Dovetail Grooves[J]. Mater Design, 2015, 87: 815-824.

[10]

Tamilchelvan P, Raghukandan K, Saravanan S. Optimization of Process Parameters in Explosive Cladding of Titanium/Stainless Steel 304L Plates[J]. Int. J. Mater Res, 2014, 104(12): 1205-1211.

[11]

Raghukandan K, Hokamoto K, Manikandan P. Optimization of Process Parameters in Explosive Cladding of Mild Steel and Aluminum[J]. Met. Mater Int., 2004, 10(2): 193-198.

[12]

ZU G, LI X, ZHANG J, et al. Interfacial Characterization and Mechanical Property of Ti/Cu Clad Sheet Produced by Explosive Welding and Annealing[J]. J. Wuhan Uni. Tech.-Mater. Sci. Ed., 2015, 30(6): 1198-1203.

[13]

Saravanan S, Raghukandan K. Thermal Kinetics in Explosive Cladding of Dissimilar Metals[J]. Sci. Technol. Weld. Joi., 2012, 17(2): 99-103.

[14]

Satyanarayan Tanaka S, Mori A, et al. Welding of Sn and Cu Plates Using Controlled Under Water Shock Wave[J]. J. Mater. Process. Tech., 2017, 245: 300-308.

[15]

Hokamoto K, Izuma T, Fujita M. New Explosive Welding Technique to Weld[J]. Metall. Trans. A, 1993, 24(10): 2289-2297.

[16]

Bataev IA, Lazurenko DV, Tanaka S, et al. High Cooling Rates and Metastable Phases at the Interfaces of Explosively Welded Materials[J]. Acta. Mater., 2017, 135: 277-289.

[17]

LI Y, Hashimoto H, Sukedai E, et al. Morphology and Structure of Various Phases at the Bonding Interface of Al/steel Formed by Explosive Welding[J]. J. Electron Microsc., 2000, 49(1): 5-16.

[18]

Tamilchelvan P, Raghukandan K, Saravanan S. Kinetic Energy Dissipation in Ti-SS Explosive Cladding with Multi Loading Ratios[J]. IJST-T Mech. Eng., 2014, 38(M1): 91-96.

[19]

Lysak VI, Kuzmin SV. Lower Boundary in Metal Explosive Welding. Evolution of ideas[J]. J. Mater. Process. Tech., 2012, 212(1): 150-156.

[20]

XIA M, FU Y, HU X. Formation, Evolution and Final Structure of Interface in 2024Al Joints Fabricated by Explosive Welding[J]. J. Wuhan Uni. Tech.-Mater. Sci. Ed., 2017, 32(5): 1171-1178.

[21]

Borchers C, Lenz M, Deutges M, et al. Microstructure and Mechanical Properties of Medium-carbon Steel Bonded on Low-carbon Steel by Explosive Welding[J]. Mater. Design, 2016, 89: 369-376.

[22]

Acarer M. Electrical, Corrosion and Mechanical Properties of Aluminium-copper Joints Produced by Explosive Welding[J]. J. Mater. Eng. Perform., 2012, 21(11): 2375-2379.

[23]

Saravanan S, Raghukandan K. Influence of Interlayer in Explosive Cladding of Dissimilar Metals[J]. Mater. Manuf. Process., 2013, 28(5): 589-594.

[24]

Wronka B. Testing of Explosive Welding and Welded Joints. The Microstructure of Explosive Welded Joints and Their Mechanical Properties[J]. J. Mater. Sci., 2010, 45(13): 3465-3469.

[25]

Mastanaiah P, Reddy GM, Prasad KS, et al. An Investigation on Microstructures and Mechanical Properties of Explosive Cladded C103 Niobium Alloy over C263 Nimonic Alloy[J]. J. Mater. Process. Tech., 2014, 214(11): 2316-2324.

[26]

RAO VN, Reddy MG, Nagarjuna S. Structure and Properties of Explosive Clad HSLA Steel with Titanium[J]. T. Indian I. Metals, 2014, 67(1): 67-77.

[27]

ROY RK. A Primer on Taguchi Method[M], 1990 New York: Van Nostrand Reinhold.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/