Visible-Light-Sensitive SrCO3/AgI Hybrids for Tetracycline Degradation

Yunning Jia , Xiangfeng Wu , Hui Li , Weiguang Zhang , Hui Wang , Tianlong Chang , Yunxuan Fu , Xutao Liu , Yudong Guo , Jialu Shang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 885 -892.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 885 -892. DOI: 10.1007/s11595-020-2334-1
Advanced Materials

Visible-Light-Sensitive SrCO3/AgI Hybrids for Tetracycline Degradation

Author information +
History +
PDF

Abstract

The SrCO3/AgI photocatalysts were prepared via a co-precipitation method by using SrCO3 as a co-photocatalyst and AgI as a photo sensitizer. X-ray diffraction, field emission scanning electron microscope, X-ray photoelectron spectrometer, UV-vis diffuse reflectance spectroscopy and electrochemical impedance spectroscope were used to analyze the structure, micro-morphology, chemical compositions, optical properties and photo-generated carrier behaviors of the as-prepared samples, respectively. The photocatalytic degradation mechanism of the as-developed composites was also proposed. Analysis results show SrCO3, an insulator, can improve the photocatalytic performances and recyclability of AgI for degrading tetracycline under visible light. As the theoretical molar ratio of Sr(NO3)2 to AgNO3 increases, the degradation efficiency of the hybrids first increases and then descends. When the theoretical molar ratio of that is 1: 1, it acquires the maximum of 66.6% within 8 min. This is higher than 32.0% of pure AgI and 34.0% of SrCO3. Moreover, after three times degradations it is 63.0%, which is higher than 13.6% of AgI. The improvement of the photocatalytic performance of the sample is attributed to the construction of hybrids. The main activated species in catalysis process are superoxide radicals.

Keywords

AgI / SrCO3 / insulator / photocatalysts / tetracycline

Cite this article

Download citation ▾
Yunning Jia, Xiangfeng Wu, Hui Li, Weiguang Zhang, Hui Wang, Tianlong Chang, Yunxuan Fu, Xutao Liu, Yudong Guo, Jialu Shang. Visible-Light-Sensitive SrCO3/AgI Hybrids for Tetracycline Degradation. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(5): 885-892 DOI:10.1007/s11595-020-2334-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu X F, Li H, Su J Z, et al. Full Spectrum Responsive In2.77S4/WS2 p-n Heterojunction as an Efficient Photocatalyst for Cr(VI) Reduction and Tetracycline Oxidation[J]. Appl. Surf. Sci., 2019, 473: 992-1 001.

[2]

Jiang H L, Li M L, Liu J, et al. Alkali-Free Synthesis of a Novel Heterostructured CeO2-TiO2 Nanocomposite with High Performance to Reduce Cr(VI) under Visible Light[J]. Ceram. Int., 208, 44: 2 709–2 717

[3]

Hu Z F, Shen Z R, Yu J C, et al. Converting Carbon-Based Photocatalysts for Environmental Treatment[J]. Environ. Sci. Technol., 2017, 51(12): 7076-7080.

[4]

Chen F, Yang Q, Li X M, et al. Hierarchical Assembly of Graphene-Bridged Ag3PO4/Ag/BiVO4 (040) Z-Scheme Photocatalyst: An Efficient, Sustainable and Heterogeneous Catalyst with Enhanced Visible-Light Photoactivity Towards Tetracycline Degradation under Visible Light Irradiation[J]. Appl. Catal. B-Environ., 2017, 200: 330-342.

[5]

Ji L L, Chen W, Duan L, et al. Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study Using Activated Carbon and Graphite as Ddsorbents[J]. Environ. Sci. Technol., 2009, 43: 2322-2327.

[6]

Shao S C, Hu Y Y, Cheng C, et al. Simultaneous Degradation of Tetracycline and Denitrification by a Novel Bacterium, Klebsiella sp SQY5[J]. Chemosphere, 208, 209: 35–53

[7]

Wang Y, Zhang H, Zhang J H, et al. Degradation of Tetracycline in Aqueous Media by Ozonation in an Internal Loop-Lift Reactor[J]. J. Hazard. Mater., 2011, 192: 35-43.

[8]

Liu Z F, Song Q G, Zhou M, et al. Synergistic Enhancement of Charge Management and Surface Reaction Kinetics by Spatially Separated Cocatalysts and p-n Heterojunctions in Pt/CuWO4/Co3O4 Photoanode[J]. Chem. Eng. J., 2019, 374: 554-563.

[9]

Li Y T, Liu Z F, Zhang J, et al. 1D/0D WO3/CdS Heterojunction Photoanodes Modified with Dual Co-Catalysts for Efficient Photoelectrochemical Water Splitting[J]. J. Alloy. Compd., 2019, 790: 493-501.

[10]

Lan Y Y, Liu Z F, Guo Z G, et al. A ZnO/ZnFe2O4 Uniform Core-Shell Heterojunction with a Tubular Structure Modified by NiOOH for Efficient Photoelectrochemical Water Splitting[J]. Dalton. T, 2018, 47(35): 12181-12187.

[11]

Chen D, Liu Z F. Dual Axial Gradient-Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting[J]. ChemSusChem, 2018, 11(19): 3438-3448.

[12]

Wang Y J, Wu X F, Zhao Z H, et al. Hydrothermal Synthesis of Zn2SnO4/Few-Layer Boron Nitride Nanosheets Hybrids as a Visible-Light-Driven Photocatalyst[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(3): 563-567.

[13]

Zhang S C, Liu Z F, Ruan M N, et al. Enhanced Piezoelectric-Effect-Assisted Photoelectrochemical Performance in ZnO Modified with Dual Cocatalysts[J]. Appl. Catal. B-Environ., 2020, 262: 118 279(1-23).

[14]

Wang L, Jin P X, Duan S H, et al. Accelerated Fenton-Like Kinetics by Visible-Light-Driven Catalysis over Iron(III) Porphyrin Functionalized Zirconium MOF: Effective Promotion on the Degradation of Organic Contaminants[J]. Environ. Sci-Nano, 2019, 6: 2652-2661.

[15]

Bai Y, Shi X, Wang P Q, et al. BiOBrxI1−x/BiOBr Heterostructure Engineering for Efficient Molecular Oxygen Activation[J]. Chem. Eng. J., 2019, 356: 34-42.

[16]

Wu X F, Sun Y, Li H, et al. In-Situ Synthesis of Novel p-n Heterojunction of Ag2CrO4-Bi2Sn2O7 Hybrids for Visible-Light-Driven Photocatalysis[J]. J. Alloy. Compd., 2018, 740: 1197-1203.

[17]

Bi Y P, Ouyang S X, Umezawa, et al. Facet Effect of Single-Crystalline Ag3PO4 Sub-Microcrystals on Photocatalytic Properties[J]. J. Am. Chem. Soc., 2011, 133: 6490-6492.

[18]

Kim J, Lee C W, Choi W. Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light[J]. Environ. Sci. Technol., 2010, 44: 6849-6854.

[19]

Jin J, Yu J G, Guo D P, et al. A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity[J]. Small, 2015, 11: 5262-5271.

[20]

Chen D M, Yang J J, Zhu Y, et al. Fabrication of BiOI/Graphene Hydrogel/FTO Photoelectrode with 3D Porous Architecture for the Enhanced Photoelectrocatalytic Performance[J]. Appl. Catal. B-Environ., 2018, 233: 202-212.

[21]

Jia Z M, Chen W, Liu T Y, et al. Biomolecule-Assisted Solvothermal Synthesis and Enhanced Visible Light Photocatalytic Performance of Bi2S3/BiOCl Composites[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(4): 765-772.

[22]

Yang M Q, Weng B, Xu Y J. Improving the Visible Light Photoactivity of In2S3-Graphene Nanocomposite via a Simple Surface Charge Modification Approach[J]. Langmuir, 2013, 29: 10549-10558.

[23]

An X Q, Yu J C, Wang F, et al. One-pot Synthesis of In2S3 Nanosheets/Graphene Composites with Enhanced Visible-Light Photocatalytic Activity[J]. Appl. Catal. B-Environ., 2013, 129: 80-88.

[24]

Xu H, Yan J, Song Y H, et al. Novel Visible-Light-Driven AgX/Graphite-Like C3N4 (X=Br, I) Hybrid Materials with Synergistic Photocatalytic Activity[J]. Appl. Catal. B-Environ., 2013, 129: 82-193.

[25]

Yu J G, Xu D F. Recent Progress on Ag-Based Semiconductor Photocatalysts[J]. J. Chinese. Ceram. Soc., 2017, 45: 1240-1255.

[26]

Bai Y, Ye L Q, Wang L, et al. G-C3N4/Bi4O5I2 Heterojunction with I3−/I Redox Mediator for Enhanced Photocatalytic CO2 Conversion[J]. Appl. Catal. B-Environ., 2016, 194: 98-104.

[27]

Chen D, Liu Z F, Guo Z G, et al. Boosting Light Harvesting and Charge Separation of Cu2O Photocathodes with Spatially Separated Noble-Metal Cocatalysts towards Highly Efficient Water Splitting[J]. J. Mater. Chem. A, 2018, 6: 20393-20401.

[28]

Hong Y Z, Jiang Y H, Li C S, et al. In-Situ Synthesis of Direct Solid-State Z-Scheme V2O5/g-C3N4 Heterojunctions with Enhanced Visible Light Efficiency in Photocatalytic Degradation of Pollutants[J]. Appl. Catal. B-Environ., 2016, 80: 663-673.

[29]

Wen X J, Niu C G, Ruan M, et al. AgI Nanoparticles-Decorated CeO2 Microsheets Photocatalyst for the Degradation of Organic Dye and Tetracycline under Visible-Light Irradiation[J]. J. Colloid Interf. Sci., 2017, 497: 368-377.

[30]

Wang Q, Shi X D, Liu E Q, et al. Facile Synthesis of AgI/BiOI-Bi2O3 Multi-Heterojunctions with High Visible Light Activity for Cr(VI) Reduction[J]. J. Hazard. Mater., 2016, 317: 8-16.

[31]

Wang X J, Wan X L, Xu X N, et al. Facile Fabrication of Highly Efficient AgI/ZnO Heterojunction and Its Application of Methylene Blue and Rhodamine B Solutions Degradation under Natural Sunlight[J]. Appl. Surf. Sci., 2014, 321: 10-18.

[32]

Lv S, Li P, Sheng H, et al. Synthesis of Single-Crystalline BaCO3 Nanostructures with Different Morphologies via a Simple PVP-Assisted Method[J]. Mater Lett., 2007, 61: 4250-4254.

[33]

Dong F, Xiong T, Sun Y J, et al. Exploring the Photocatalysis Mechanism on Insulators[J]. Appl. Catal. B-Environ., 2017, 219: 450-458.

[34]

Wang H, Sun Y J, Jiang G M, et al. Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core-Shell Heterojunctions[J]. Environ. Sci. Technol., 2018, 52: 1479-1487.

[35]

Wu X F, Li H, Sun L S, et al. One-Step Hydrothermal Synthesis of Visible-Light-Driven In2.77S4/SrCO3 Heterojunction with Effcient Photocatalytic Activity for Degradation of Methyl Orange and Tetracycline[J]. Appl. Phys. A-Mater., 2018, 124(9): 584(1-9).

[36]

Wu X F, Li H, Sun Y, et al. Synthesis of SnS2/Few Layer Boron Nitride Nanosheets Composites as a Novel Material for Visible-Light-Driven Photocatalysis[J]. Appl. Phys. A-Mater., 2017, 123(11): 709(1-11).

[37]

Wu X F, Li H, Zhang Y, et al. Synthesis of AgI/WS2 Hybrids as a Novel Photocatalyst with Efficient Degradation of Rhodamine B[J]. Micro Nano Lett., 2019, 14: 173-177.

[38]

Yu H G, Cao C, Wang X F, et al. Ag-Modified BiOCl Single-Crystal Nanosheets: Dependence of Photocatalytic Performance on the Region-Selective Deposition of Ag Nanoparticles[J]. J. Phys. Chem. C, 2017, 121: 13191-13201.

[39]

Liu S, Zhao M Y, He Z T, et al. Preparation of a p-n Heterojunction 2D BiOI Nanosheet/1D BiPO4 Nanorod Composite Electrode for Enhanced Visible Light Photoelectrocatalysis[J]. Chinese J. Catal., 2019, 40: 446-457.

[40]

Zhang Z Y, Jiang D L, He M Q, et al. Construction of SnNb2O6 Nanosheet/G-C3N4 Nanosheet Two-Dimensional Heterostructures with Improved Photocatalytic Activity: Synergistic Effect and Mechanism Insight[J]. Appl. Catal. B-Environ., 2015, 83: 113-123.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/