The Influence of Alkaline Earth Elements on Electronic Properties of α-Si3N4 via DFT Calculation

Jianwen Zhang , Zhifeng Huang , Ziqian Yin , Meijuan Li , Fei Chen , Qiang Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 863 -871.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 863 -871. DOI: 10.1007/s11595-020-2331-4
Advanced Materials

The Influence of Alkaline Earth Elements on Electronic Properties of α-Si3N4 via DFT Calculation

Author information +
History +
PDF

Abstract

We used density functional theory (DFT) calculations to study the influence of alkali earth metal element (AE) doping on the crystal structure and electronic band structure of α-Si3N4. The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into the α-Si3N4 lattice. Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment, while substitute Si under the nitrogen-rich environment, which provides a guide to synthesizing α-Si3N4 with different doping types by controlling nitrogen conditions. For electronic structures, energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band, which reduces the bandgap of α-Si3N4.

Keywords

first-principles / density functional theory calculations / alkaline earth elements doped α-Si3N4 / photoluminescence material / crystal structure / electronic structure

Cite this article

Download citation ▾
Jianwen Zhang, Zhifeng Huang, Ziqian Yin, Meijuan Li, Fei Chen, Qiang Shen. The Influence of Alkaline Earth Elements on Electronic Properties of α-Si3N4 via DFT Calculation. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(5): 863-871 DOI:10.1007/s11595-020-2331-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen D, Cang Y P. First-Principles Study of the High-Temperature Behaviors of the Willemite-II and Post-Phenacite Phases of Silicon Nitride[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2016, 31(1): 74-79.

[2]

Cheng C B, Fan R H, Wang C H, et al. Moisture-Proof and Enhanced Effect of Inorganic Coating on Porous Si3N4 Ceramic[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2015, 30(2): 311-314.

[3]

Duan Y, Zhang J, Li X, et al. High Thermal Conductivity Silicon Nitride Ceramics Prepared by Pressureless Sintering with Ternary Sintering Additives[J]. Int. J. Appl. Ceram. Technol., 2019, 16(4): 1399-1406.

[4]

Duan Y S, Liu N, Zhang J X, et al. Cost Effective Preparation of Si3N4 Ceramics with Improved Thermal Conductivity and Mechanical Properties[J]. J. Eur. Ceram. Soc., 2020, 40(2): 298-304.

[5]

Hirao K, Watari K, Hayashi H, et al. High Thermal Conductivity Silicon Nitride Ceramic[J]. MRS Bull., 2001, 26(6): 451-455.

[6]

Yang F, Zhao S, Yang Z, et al. Synthesis and Characterization of Outer Shell Strengthened Si3N4 Foam Ceramics[J]. Mater Res. Express, 2019, 6(10): 105 017 (1-7).

[7]

Yin S, Jiang S, Pan L, et al. Preparation, Mechanical and Thermal Properties of Si3N4 Ceramics by Gelcasting Using Low-Toxic DMAA Gelling System and Gas Pressure Sintering[J]. Ceram. Int., 2018, 44(18): 22412-22420.

[8]

Li Y, Kim H-N, Wu H, et al. Improved Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride Using a BN/Graphite Powder Bed[J]. J. Eur. Ceram. Soc., 2017, 37(15): 4483-4490.

[9]

Liu K, Zhang C R, Li B, et al. Effect of Sintering Additives on Properties of Si3N4-BN Composites Fabricated via Die Pressing and Precursor Infiltration and Pyrolysis Route[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2014, 29(5): 891-894.

[10]

Riley F L. Silicon Nitride and Related Materials[J]. J. Am. Ceram. Soc., 2000, 83(2): 245-265.

[11]

Wang L, Qi Q, Cai P, et al. New Route to Improve the Fracture Toughness and Flexural Strength of Si3N4 Ceramics by Adding FeSi2[J]. Scr. Mater., 2017, 126: 11-14.

[12]

Boyko T D, Gross T, Schwarz M, et al. The Local Crystal Structure and Electronic Band Gap of Beta-Sialons[J]. J. Mater Sci., 2014, 49(8): 3242-3252.

[13]

Chen Y R, Li Z M, Zhang Z W, et al. Annealing Effect on the Bipolar Resistive Switching Characteristics of a Ti/Si3N4/N-GaN MIS Device[J]. J. Alloy. Compd., 2018, 740: 816-822.

[14]

Ma T P. Making Silicon Nitride Film a Viable Gate Dielectric[J]. IEEE Trans. Electron Devices, 1998, 45(3): 680-690.

[15]

Razavi S M, Pour S T, Najari P. New Gan Based Hemt with Si3 N 4 or Un-Doped Region in the Barrier for High Power Applications[J]. Superlattices Microstruct., 2018, 118: 221-229.

[16]

Huang J, Zhang S, Huang Z, et al. Catalyst-Assisted Synthesis and Growth Mechanism of Ultra-Long Single Crystal Alpha-Si3N4 Nanobelts with Strong Violet-Blue Luminescent Properties[J]. Crystengcomm, 2012, 14(21): 7301-7305.

[17]

Cao L, Guo J, Wang S, et al. Effect of Graphene Oxide on in-Situ Surface Growth of Pure Alpha-Si3N4 Microbelts and Their Blue Luminescent Performance[J]. Carbon, 2019, 154: 74-80.

[18]

Huang J, Zhang S, Huang Z, et al. Growth of Alpha-Si3N4 Nanobelts via Ni-Catalyzed Thermal Chemical Vapour Deposition and Their Violet-Blue Luminescent Properties[J]. Crystengcomm, 2013, 15(4): 785-790.

[19]

Huang Z, Chen F, Shen Q, et al. Linking Photoluminescence of Alpha-Si3N4 to Intrinsic Point Defects via Band Structure Modelling[J]. RSC Adv., 2016, 6(9): 7568-7574.

[20]

Zhang L G, Jin H, Yang W Y, et al. Optical Properties of Single-Crystalline Alpha-Si3N4 Nanobelts[J]. Appl. Phys. Lett., 2005, 86(6): 061 908(1–3)

[21]

Dasog M, Veinot J G C. Solid-State Synthesis of Luminescent Silicon Nitride Nanocrystals[J]. Chem. Commun., 2012, 48(31): 3760-3762.

[22]

Qian H, Zhu Y, Mao Z, et al. Tunable Morphology and Photoluminescence of Uniform Alpha-Si3N4 Microribbons[J]. Micro Nano Lett., 2012, 7(7): 637-640.

[23]

Su R, Huang Z F, Chen F, et al. Synthesis and Luminescent Properties of Ternary Si-Ge-N Nanowires[J]. Crystengcomm, 2016, 18(45): 8787-8793.

[24]

Puglia D, Sombrio G, dos Reis R, et al. Photoluminescence Properties of Arsenic and Boron Doped Si3N4 Nanocrystal Embedded in SiNxOy Matrix[J]. Mater. Res. Express, 2018, 5(3): 036 201 1–7)

[25]

Bosco G B F, Khatami Z, Wojcik J, et al. Excitation Mechanism of Tb3+ in Alpha-Si3N4: H under Sub-Gap Excitation[J]. J. Lumines., 2018, 202: 327-331.

[26]

Yang C, Ye F, Ma J, et al. Comparative Study of Fluoride and Non-Fluoride Additives in High Thermal Conductive Silicon Nitride Ceramics Fabricated by Spark Plasma Sintering and Post-Sintering Heat Treatment[J]. Ceram. Int., 2018, 44(18): 23202-23207.

[27]

El-hoshoudy A N, Soliman F S, Mansour E M, et al. Experimental and Theoretical Investigation of Quaternary Ammonium-Based Deep Eutectic Solvent for Secondary Water Flooding[J]. J. Mol. Liq., 2019, 294: 111 621 (1-16).

[28]

Jing Y, Liu J, Zhou Z, et al. Metallic Nb2s2c Monolayer: A Promising Two-Dimensional Anode Material for Metal-Ion Batteries[J]. J. Phys. Chem. C, 2019, 123(44): 26803-26811.

[29]

Van der Ven A, Deng Z, Banerjee S, et al. Rechargeable Alkali-Ion Battery Materials: Theory and Computation[J]. Chem. Rev., 2020, 120(14): 6977-7019.

[30]

Kazemi S A, Wang Y. Super Strong 2d Titanium Carbide Mxene-Based Materials: A Theoretical Prediction[J]. J. Phys.-Condes. Matter., 2020, 32(11): 11LT01 (1-7).

[31]

Sultan S, Ha M, Kim D Y, et al. Superb Water Splitting Activity of the Electrocatalyst Fe3Co(PO4)4 Designed with Computation Aid[J]. Nat. Commun., 2019, 10: 1-9.

[32]

Anjum T A, Naveed-Ul-Haq M, Hussain S, et al. Analyses of Structure, Electronic and Multiferroic Properties of Bi1−xNdxFeO3 (X=0, 0.05, 010, 015, 0.20, 0.25) System[J]. J. Alloy. Compd., 2020, 820: 153 095. 1–10)

[33]

Adim N, Caid M, Rached D, et al. Computational Study of Structural, Electronic, Magnetic and Optical Properties of (ZnTe)m/(MnTe) n Superlattices[J]. J. Magn. Magn. Mater., 2020, 499: 166 314. 1–18)

[34]

Barhoumi M, Lazaar K, Bouzidi S, et al. A DFT Study of Janus Structure of S and Se in Hfsse Layered as a Promising Candidate for Electronic Devices[J]. J. Mol. Graph., 2020, 96: 107 511 (1-21).

[35]

Xiong L, Dai J H, Song Y, et al. Effects of Doping on Photoelectrical Properties of One-Dimensional Alpha-Si3N4 Nanomaterials: A First-Principles Study[J]. Physica B, 2018, 550: 32-38.

[36]

Lu X, Gao X, Ren J, et al. Investigation of Electronic Structures and Optical Properties of Beta-Si3N4 Doped with IV A Elements: A First-Principles Simulation[J]. AIP Adv., 2018, 8(4): 045 023 1–12)

[37]

Huang Z, Chen F, Su R, et al. Electronic and Optical Properties of Y-Doped Si3N4 by Density Functional Theory[J]. J. Alloy. Compd., 2015, 637: 376-381.

[38]

Huang Z, Wang Z, Yuan H, et al. Synthesis and Photoluminescence of Doped Si3N4 Nanowires with Various Valence Electron Configurations[J]. J. Mater. Sci., 2018, 53(19): 13573-13583.

[39]

Wang Z, Huang Z, Chen F, et al. Synthesis and Photoluminescence of Heavily La-Doped Alpha-Si3N4 Nanowires via Nitriding Cyromilled Nanocrystalline La-Doped Silicon Powder[J]. J. Lumines., 2014, 151: 66-70.

[40]

Wang F, Qin X, Yang L, et al. Synthesis and Photoluminescence of Si3N4 Nanowires from La/SiO2 Composites and Si Powders[J]. Ceram. Int., 2015, 41(1): 1505-1510.

[41]

Huang Z, Wang Z, Chen F, et al. Band Structures and Optical Properties of Al-Doped Alpha-Si3N4: Theoretical and Experimental Studies[J]. Ceram. Int., 2016, 42(2): 3681-3686.

[42]

Yang W, Wang H, Liu S, et al. Controlled Al-Doped Single-Crystalline Silicon Nitride Nanowires Synthesized via Pyrolysis of Polymer Precursors[J]. J. Phys. Chem. B, 2007, 111(16): 4156-4160.

[43]

Mao Z, Zhu Y, Zeng Y, et al. Investigation of Al-Doped Silicon Nitride-Based Semiconductor and Its Shrinkage Mechanism[J]. Crystengcomm, 2012, 14(23): 7929-7933.

[44]

Gao F, Wang Y, Zhang L, et al. Optical Properties of Heavily Al-Doped Single-Crystal Si3N4 Nanobelts[J]. J. Am. Ceram. Soc., 2010, 93(5): 1364-1367.

[45]

Su R, Huang Z F, Chen F, et al. Simplified Synthesis and Luminous Mechanism of Eu2-Doped Alpha-Si3N4 Nanowires with Strong Green Luminescent Properties[J]. Key Eng. Mater., 2016, 727: 635-641.

[46]

Xu X, Nishimura T, Huang Q, et al. Synthesis and Photoluminescence of Eu2-Doped Alpha-Silicon Nitride Nanowires Coated with Thin BN Film[J]. J. Am. Ceram. Soc., 2007, 90(12): 4047-4049.

[47]

Xu C K, Kim M, Chun J, et al. Gallium-Doped Silicon Nitride Nanowires Sheathed with Amorphous Silicon Oxynitride[J]. Scr. Mater., 2005, 53(8): 949-954.

[48]

Kresse G and Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Comp.mat.er.sci, 6(1): 0–50

[49]

Aryasetiawan F, Gunnarsson O. The GW Method[J]. Rep. Prog. Phys., 1998, 61(3): 237-312.

[50]

Xiao W, Geng W T. Substantial Band-Gap Narrowing of Alpha-Si3N4 Induced by Heavy Al Doping[J]. Phys. Lett. A, 2011, 375(30–31): 2874-2877.

[51]

Ding Y C, Xiang A P, Xu M, et al. Electronic Structures and Optical Properties of Gamma-Si3N4 Doped with La[J]. Physica B, 2008, 403(13–16): 2200-2206.

[52]

Cheng C Q, Li G, Zhang W D, et al. Electronic Structures and Optical Properties of Boron and Phosphorus Doped Beta-Si3N4 [J]. Acta Phys. Sin., 2015, 64(6): 067 102 (1–7)

[53]

Karazhanov S Z, Kroll P, Marstein E S, et al. Doping-Induced Modulation of Electrical and Optical Properties of Silicon Nitride[J]. Thin Solid Films, 2010, 518(17): 4918-4922.

[54]

Lu X F, La P Q, Guo X, et al. Research of Electronic Structures and Optical Properties of Na- and Mg-Doped Beta-Si3N4 Based on the First-Principles Calculations[J]. Comput. Mater. Sci., 2013, 79: 174-181.

[55]

Lu X F, Gao X, Ren J Q, et al. Bandgap Control and Optical Properties of Beta-Si3N4 by Single- and Co-Doping from a First-Principles Simulation[J]. Int. J. Mod. Phys. B, 2018, 32(14): 1 850 178 1–12)

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/