Synthesis of Highly Microporous Sulfur-Containing Activated Carbons by a Multistep Modification Process

Kai Fang , Jie Sheng , Rendang Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 856 -862.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (5) : 856 -862. DOI: 10.1007/s11595-020-2330-5
Advanced Materials

Synthesis of Highly Microporous Sulfur-Containing Activated Carbons by a Multistep Modification Process

Author information +
History +
PDF

Abstract

The sulfur-containing activated carbons (SACs) were prepared by CO2 activation and sulfur impregnation. The sulfur-containing samples were then oxidized in air. The SACs were characterized by N2 adsorption, elemental analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The CO2 activation provided precursor carbons with high porosity, which in turn were sulfurized effectively. Oxidation in air at 200 °C enlarged pores and redistributed amorphous sulfur in the hierarchical pores. A typical SAC containing 17.89% sulfur exhibited a surface area of 1 464 m2/g. This work may open up a valid route to prepare highly microporous SACs with high sulfur loading for applications where the presence of sulfur is beneficial.

Keywords

sulfur loading / micropore / CO2 activation / air oxidation / porous carbons

Cite this article

Download citation ▾
Kai Fang, Jie Sheng, Rendang Yang. Synthesis of Highly Microporous Sulfur-Containing Activated Carbons by a Multistep Modification Process. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(5): 856-862 DOI:10.1007/s11595-020-2330-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seredych M, Bandosz T J. Removal of Dibenzothiophenes from Model Diesel Fuel on Sulfur Rich Activated Carbons[J]. Appl. Catal. B-Environ., 2011, 106(1–2): 133-141.

[2]

Seredych M, Bandosz T J. Investigation of the Enhancing Effects of Sulfur and/or Oxygen Functional Groups of Nanoporous Carbons on Adsorption of Dibenzothiophenes[J]. Carbon, 2011, 49(4): 1216-1224.

[3]

Li N, Wei H, Duan Y, et al. Experimental Study on Mercury Adsorption and Adsorbent Regeneration of Sulfur-Loaded Activated Carbon[J]. Energy & Fuels, 2018, 32(10): 11023-11029.

[4]

Hsi H C, Tsai C Y, Lin K J. Impact of Surface Functional Groups, Water Vapor, and Flue Gas Components on Mercury Adsorption and Oxidation by Sulfur-Impregnated Activated Carbons[J]. Energy & Fuels, 2014, 28(5): 3300-3309.

[5]

Nemoto Y, Iitsuka Y, Watanabe K, et al. Adsorptive Removal of Ni (II) from Water Using Oxidized Activated Carbon Derived from Sulfur Containing Petroleum Coke[J]. Kagaku Kogaku Ronbun., 2016, 42(4): 142-147.

[6]

Dong C, Zhang H, Pang Z, et al. Sulfonated Modification of Cotton Linter and Its Application as Adsorbent for High-Efficiency Removal of Lead(II) in Effluent[J]. Bioresour. Technol., 2013, 146: 512-518.

[7]

Gomis-Berenguer A, Seredych M, Iniesta J, et al. Sulfur-Mediated Photochemical Energy Harvesting in Nanoporous Carbons[J]. Carbon, 2016, 104: 253-259.

[8]

Guo Y, Zeng Z, Li Y, et al. In-Situ Sulfur-Doped Carbon as a Metal-Free Catalyst for Persulfate Activated Oxidation of Aqueous Organics[J]. Catal. Today, 2018, 307: 12-19.

[9]

Warneke S, Eusterholz M, Zenn R K, et al. Differences in Electrochemistry Between Fibrous SPAN and Fibrous S/C Cathodes Relevant to Cycle Stability and Capacity[J]. J. Electrochem. Soc., 2018, 165(1): A6 017-A6 020.

[10]

Gong Z, Wu Q, Wang F, et al. A Hierarchical Micro/Mesoporous Carbon Fiber/Sulfur Composite for High-Performance Lithium-Sulfur Batteries[J]. RSC Adv., 2016, 6(44): 37443-37451.

[11]

Yu X, Kang Y, Park H S. Sulfur and Phosphorus Co-Doping of Hierarchically Porous Graphene Aerogels for Enhancing Supercapacitor Performance[J]. Carbon, 2016, 101: 49-56.

[12]

Liu W, Tang Y, Sun Z, et al. A Simple Approach of Constructing Sulfur-Containing Porous Carbon Nanotubes for High-Performance Supercapacitors[J]. Carbon, 2017, 115: 754-762.

[13]

Seredych M, Jagiello J, Bandosz T J. Complexity of CO2 Adsorption on Nanoporous Sulfur-Doped Carbons — Is Surface Chemistry an Important Factor[J]. Carbon, 2014, 74: 207-217.

[14]

Shi J, Yan N, Cui H, et al. Sulfur Doped Microporous Carbons for CO2 Adsorption[J]. J. Environ. Chem. Eng., 2017, 5(5): 4605-4611.

[15]

Zhang D, Jing X, Sholl D S, et al. Molecular Simulation of Capture of Sulfur-Containing Gases by Porous Aromatic Frameworks[J]. J. Phys. Chem. C, 2018, 122(32): 18456-18467.

[16]

Yan Y, Wei Y, Li Q, et al. Activated Porous Carbon Materials with Ultrahigh Specific Surface Area Derived from Banana Peels for High-Performance Lithium-Sulfur Batteries[J]. J. Mater. Sci.-Mater. Electron., 2018, 29(13): 11325-11335.

[17]

Zheng M, Zhang S, Chen S, et al. Activated Graphene with Tailored Pore Structure Parameters for Long Cycle-Life Lithium-Sulfur Batteries[J]. Nano Res., 2017, 10(12): 4305-4317.

[18]

Kiciński W, Dziura A. Heteroatom-Doped Carbon Gels from Phenols and Heterocyclic Aldehydes: Sulfur-Doped Carbon Xerogels[J]. Carbon, 2014, 75: 56-67.

[19]

Yin F, Yu J, Dou J, et al. Sulfidation of Iron-Based Sorbents Supported on Activated Chars During the Desulfurization of Coke Oven Gases: Effects of Mo and Ce Addition[J]. Energy & Fuels, 2014, 28(4): 2481-2489.

[20]

Wu G, Xu M, Liu Q, et al. Micromechanism of Sulfurizing Activated Carbon and Its Ability to Adsorb Mercury[J]. Appl. Phys. A-Mater. Sci. Process., 2013, 113(2): 389-395.

[21]

Feng W, Borguet E, Vidic R D. Sulfurization of Carbon Surface for Vapor Phase Mercury Removal — I: Effect of Temperature and Sulfurization Protocol[J]. Carbon, 2006, 44(14): 2990-2997.

[22]

Perazzolo V, Gradzka E, Durante C, et al. Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons[J]. Electrochim. Acta, 2016, 197: 251-262.

[23]

Roberts A D, Li X, Zhang H. Hierarchically Porous Sulfur-Containing Activated Carbon Monoliths via Ice-Templating and One-Step Pyrolysis[J]. Carbon, 2015, 95: 268-278.

[24]

Wang D, Fu A, Li H, et al. Mesoporous Carbon Spheres with Controlled Porosity for High-Performance Lithium-Sulfur Batteries[J]. J. Power Sources, 2015, 285: 469-477.

[25]

Yao Y, Velpari V, Economy J. Design of Sulfur Treated Activated Carbon Fibers for Gas Phase Elemental Mercury Removal[J]. Fuel, 2014, 116: 560-565.

[26]

Sohn H, Gordin M L, Regula M, et al. Porous Spherical Polyacrylonitrile-Carbon Nanocomposite with High Loading of Sulfur for Lithiumesulfur Batteries[J]. J. Power Sources, 2016, 302: 70-78.

[27]

Park J H, Wang J J, Zhou B, et al. Removing Mercury from Aqueous Solution Using Sulfurized Biochar and associated Mechanisms[J]. Environ. Pollut., 2019, 244: 627-635.

[28]

Wang S, Zhao Z, Xu H, et al. Sulfur Impregnated in Tunable Porous N-Doped Carbon as Sulfur Cathode: Effect of Pore Size Distribution[J]. Electrochim. Acta, 2015, 173: 282-289.

[29]

Yang S, Wang D, Liu H, et al. Highly Stable Activated Carbon Composite Material to Selectively Capture Gas-Phase Elemental Mercury from Smelting Flue Gas: Copper Polysulfide Modification[J]. Chem. Eng. J., 2019, 358: 1235-1242.

[30]

Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. Surface Modification of Nanocast Ordered Mesoporous Carbons Through a Wet Oxidation Method[J]. Carbon, 2013, 62: 193-203.

[31]

Prauchner M J, Rodríguez-Reinoso F. Chemical Versus Physical Activation of Coconut Shell: a Comparative Study[J]. Microporous Mesoporous Mat., 2012, 152: 163-171.

[32]

Yu Q, Li M, Ning P, et al. Characterization of Metal Oxide-Modified Walnut-Shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2019, 34(2): 487-495.

[33]

Sajjadi B, Chen W Y, Egiebor N O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications[J]. Rev. Chem. Eng., 2019, 35(6): 735-776.

[34]

Sevilla M, Fuertes A B. Highly Porous S-Doped Carbons[J]. Microporous Mesoporous Mater., 2012(158): 318–323

[35]

Zhang J, Xiang J, Dong Z, et al. Biomass Derived Activated Carbon with 3D Connected Architecture for Rechargeable Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2014(116): 146–151

[36]

Hsi H-c, Rood M J, Rostam-abadi M, et al. Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (Acfs)[J]. Environ. Sci. Technol., 2001, 35(13): 2785-2791.

[37]

Raiß C, Peppler K, Janek J, et al. Pitfalls in the Characterization of Sulfur/Carbon Nanocomposite Materials for Lithium-Sulfur Batteries[J]. Carbon, 2014, 79: 245-255.

[38]

Reddy K S K, Al Shoaibi A, Srinivasakannan C. Mercury Removal Using Metal Sulfide Porous Carbon Complex[J]. Process Saf. Environ. Protect., 2018, 114: 153-158.

[39]

Elazari R, Salitra G, Garsuch A, et al. Sulfur-Impregnated Activated Carbon Fiber Cloth as A Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv. Mater., 2011, 23(47): 5641-5644.

[40]

Liang C, Dudney N J, Howe J Y. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery[J]. Chem. Mat., 2009, 21(19): 4724-4730.

[41]

Balakumar K, Sathish R, Kalaiselvi N. Exploration of Microporous Bio-Carbon Scaffold for Efficient Utilization of Sulfur in Lithium-Sulfur System[J]. Electrochim. Acta, 2016, 209: 171-182.

[42]

Vivo-Vilches J F, Bailón-García E, Pérez-Cadenas A F, et al. Tailoring the Surface Chemistry and Porosity of Activated Carbons: Evidence of Reorganization and Mobility of Oxygenated Surface Groups[J]. Carbon, 2014, 68: 520-530.

[43]

Zhou H Y, Sui Z Y, Liu S, et al. Nanostructured Porous Carbons Derived from Nitrogen-Doped Graphene Nanoribbon Aerogels for Lithium-Sulfur Batteries[J]. J. Colloid Interface Sci., 2019, 541: 204-212.

[44]

Sohn H, Gordin M L, Regula M, et al. Porous Spherical Polyacrylonitrile-Carbon Nanocomposite with High Loading of Sulfur for Lithium-Sulfur Batteries[J]. J. Power Sources, 2016, 302: 70-78.

[45]

Lu Y, Li S. Preparation of Hierarchically Interconnected Porous Banana Peel Activated Carbon for Methylene Blue Adsorption[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2019, 34(2): 472-480.

[46]

Al-Kahtani A A, Alshehri S M, Naushad M, et al. Fabrication of Highly Porous N/S Doped Carbon Embedded with ZnS as Highly Efficient Photocatalyst for Degradation of Bisphenol[J]. Int. J. Biol. Macromol., 2019, 121: 415-423.

[47]

Manoukian M, Tavakol H, Fashandi H. Synthesis of Highly Uniform Sulfur-Doped Carbon Sphere Using CVD Method and Its Application for Cationic Dye Removal in Comparison with Undoped Product[J]. J. Environ. Chem. Eng., 2018, 6(6): 6904-6915.

[48]

Qin L, Hou Z, Lu S, et al. Porous Carbon Derived from Pine Nut Shell Prepared by Steam Activation for Supercapacitor Electrode Material[J]. Int. J. Electrochem. Sci., 2019, 14: 8907-8918.

[49]

Wang D, Wang K, Wu H, et al. CO2 Oxidation of Carbon Nanotubes for Lithium-Sulfur Batteries with Improved Electrochemical Performance[J]. Carbon, 2018, 132: 370-379.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/