Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films

Yu Tian , Puxin Zhu , Mi Zhou , Yi Lin , Fei Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 825 -831.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 825 -831. DOI: 10.1007/s11595-020-2326-1
Organic Materials

Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films

Author information +
History +
PDF

Abstract

The starch/polyvinyl alcohol (PVA)/microfibrillated cellulose (MFC) composite films were prepared using solution casting method after adding MFC into starch/PVA blend matrix. The effects of MFC content on the mechanical properties of starch/PVA composite films were investigated. As MFC content increases, the elongation at break and tensile strength increase firstly and then decrease. When the content of MFC is 2wt%, the tensile strength is 26.6 MPa and reaches the maximum. Through Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), good dispersion of MFC in starch/PVA matrix at the loading of 2wt%, lower crystallinity of the starch/PVA/MFC films in comparison with starch/PVA blend and the effect of glass transition temperature increasing with MFC content from 0.5wt% to 4wt% can be found observed. And, incorporating MFC does not change the composition and crystal structure of the starch/PVA composite films. Thus, the reinforcing mechanism for the improvement of mechanical properties is attributed to the homogeneous dispersion of MFC with large aspect ratio, good compatibility and interfacial interactions between starch/PVA blend matrix and MFC.

Keywords

biopolymers / fillers / blends / composites / mechanical properties

Cite this article

Download citation ▾
Yu Tian, Puxin Zhu, Mi Zhou, Yi Lin, Fei Cheng. Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 825-831 DOI:10.1007/s11595-020-2326-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patil NV, Netravali AN. Microfibrillated Cellulose-reinforced Nonedible Starch-based Thermoset Biocomposites[J]. J. Appl. Polym. Sci., 2016, 133(45): 43 803(1)-43 803(9).

[2]

Hillmyer MA, Tolman WB. Aliphatic Polyester Block Polymers: Renewable, Begradable, and Sustainable[J]. Acc. Chem. Res., 2014, 47(8): 2 390-2 396.

[3]

Rhim JW, Park HM, Ha CS, et al. Bio-nanocomposites for Food Packaging Applications[J]. Prog. Polym. Sci., 2013, 38(10–11): 1 629-1 652.

[4]

Zhao X, Wu T, Peng SX, et al. Synthesis and Photoinitiated Crosslinking of Active Poly(lactic acid) Materials[J]. J. Wuhan Univ. Technol., 2018, 33(5): 1 239-1 246.

[5]

Zuo Y, Wu Y, Gu J, et al. The UV Aging Properties of Maleic Anhydride Esterified Starch/Polylactic Acid Composites[J]. J. Wuhan Univ. Technol., 2017, 32(4): 971-977.

[6]

Zhang B, Bai B, Pan Y, et al. Effects of Pectin With Different Molecular Weight on Gelatinization Behavior, Textural Properties, Retrogradation and in vitro Digestibility of Corn Starch[J]. Food Chemistry, 2018, 264: 58-63.

[7]

Yu W, Tao K, Gilbert RG. Improved Methodology for Analyzing Relations Between Starch Digestion Kinetics and Molecular Structure[J]. Food Chemistry, 2018, 264: 284-292.

[8]

Zhu T, Wang Y. Alumina Ceramics Fabricated by in-situ Consolidation of Pre-gelling Starch[J]. J. Wuhan. Univ. Technol., 2018, 33(3): 758-766.

[9]

Tesfaye T, Gibril M, Sithole B, et al. Valorisation of Avocado Seeds: Extraction and Characterisation of Starch for Textile Applications[J]. Clean. Technol. Envir., 2018, 20(9): 2 135-2 154.

[10]

De MI, Iannone R, Miranda S, et al. An Environmental Study on Starch Aerogel for Drug Delivery Applications: Effect of Plant Scale-up[J]. Int. J. Life Cycle. Assess., 2017, 23(6): 1 228-1 239.

[11]

Zhu F. Properties and Food Uses of Chestnut Flour and Starch[J]. Food Bioprocess. Techno., 2017, 10(7): 1 173-1 191.

[12]

Chen G, Zhu P, Kuang Y, et al. Durable Superhydrophobic Paper Enabled by Surface Sizing of Starch-based Composite Films[J]. Appl. Surf. Sci., 2017, 409: 45-51.

[13]

Zhang X, Burgar I, Lourbakos E, et al. The Mechanical Property and Phase Structures of Wheat Proteins/Polyvinyl Alcohol Blends Studied by High-resolution Solid-state NMR[J]. Polymer, 2004, 45(10): 3 305-3 312.

[14]

Martins AB, Santana RMC. Effect of Carboxylic Acids as Compatibilizer Agent on Mechanical Properties of Thermoplastic Starch and Polypropylene Blends[J]. Carbohyd. Polym., 2016, 135: 79-85.

[15]

Yun IS, Hwang SW, Jin KS, et al. A Study on the Thermal and Mechanical Properties of Poly (butylene succinate)/Thermoplastic Starch Binary Blends[J]. Int. J. Pr. Eng. Man.-GT., 2016, 3(3): 289-296.

[16]

Abbott AP, Abolibda TZ, Qu W, et al. Thermoplastic Starch-polyethylene Blends Homogenised Using Deep Eutectic Solvents[J]. Rsc. Adv., 2017, 7(12): 7 268-7 273.

[17]

Zhu Z. Starch Mono-phosphorylation for Enhancing the Stability of Starch/PVA Blend Pastes for Warp Sizing[J]. Carbohyd. Polyms., 2003, 54(1): 115-118.

[18]

Wang W, Hui Z, Rui J, et al. High Performance Extrusion Blown Starch/Polyvinyl Alcohol/Clay Nanocomposite Films[J]. Food Hydrocollloid., 2017, 79: 534-543.

[19]

Kumar SV, George J, Sajeevkumar VA. PVA based Ternary Nanocomposites with Enhanced Properties Prepared by Using a Combination of Rice Starch Nanocrystals and Silver Nanoparticles[J]. J. Polym. Environ., 2018, 26(7): 3 117-3 127.

[20]

Jose J, De SK, Alma’Adeed MAA, et al. Compatibilizing Role of Carbon Nanotubes in Poly(vinyl alcohol)/starch Blend[J]. Starch/Stärke, 2015, 67(1–2): 147-153.

[21]

Wu Z, Huang Y, Xiao L, et al. Physical Properties and Structural Characterization of Starch/Polyvinyl Alcohol/Graphene Oxide Composite Films[J]. International Int. J. Biol. Macromol., 2018, 123: 569-575.

[22]

Lin D, Huang Y, Liu Y, et al. Physico-mechanical and Structural Characteristics of Starch/Polyvinyl Alcohol/Nano-titania Photocatalytic Antimicrobial Composite Films[J]. LWT-Food Sci. Technol., 2018, 96: 704-712.

[23]

Siró I, Plackett D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review[J]. Cellulose, 2010, 17(3): 459-494.

[24]

Tanpichai S, Sampson WW, Eichhorn SJ. Stress Transfer in Microfibrillated Cellulose Reinforced Poly(vinyl alcohol) Composites[J]. Compos. Part. A.-Appl. S., 2014, 65: 186-191.

[25]

Lendvai L, Karger-Kocsis J, Kmetty Á, et al. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites[J]. J. Appl. Polym. Sci., 2016, 133: 42 397(1)-42 397(8).

[26]

Tanpichai S, Sampson WW, Eichhorn SJ. Stress Transfer in Microfibrillated Cellulose Reinforced Poly(vinyl alcohol) Composites[J]. Adv. Mater. Res., 2014, 747(10): 359-362.

[27]

Li W, Li C, Gu Z, et al. Relationship between Structure and Retrogradation Properties of Corn Starch Treated with 1,4-α-glucan Branching Enzyme[J]. Food Hydrocolloid, 2016, 52: 868-875.

[28]

Zhao X, Zhang Q, Chen D, et al. Enhanced Mechanical Properties of Graphene-based Poly(vinyl alcohol) Composites[J]. Macromolecules, 2010, 43(5): 2 357-2 363.

[29]

Tian H, Wang K, Liu D, et al. Enhanced Mechanical and Thermal Properties of Poly (vinyl alcohol)/Corn Starch Blends by Nanoclay Intercalation. Int. J. Biol. Macromol., 2017, 101: 314-320.

[30]

Jose J, Al-Harthi MA, Alma’Adeed MAA, et al. Effect of Graphene Loading on Thermomechanical Properties of Poly(vinyl alcohol)/Starch Blend[J]. J. Appl. Polym. Sci., 2015, 132(16): 41 827(1)-41 827(8).

[31]

Cano AI, CháFer M, Chiralt A, et al. Physical and Microstructural Properties of Biodegradable Films based on Pea Starch and PVA[J]. J. Food. Eng., 2015, 167(49): 59-64.

[32]

Yao X, Qi X, He Y, et al. Simultaneous Reinforcing and Toughening of Polyurethane via Grafting on the Surface of Microfibrillated Cellulose[J]. Acs. Appl. Mater. Inter., 2014, 6(4): 2 497-2 507.

[33]

Wong KJ, Zahi S, Low KO, et al. Fracture Characterisation of Short Bamboo Fibre Reinforced Polyester Composites[J]. Mater. Design, 2010, 31(9): 4 147-4 154.

[34]

Yang Z, Li X, Si J, et al. Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering[J]. J. Wuhan Univ. Technol., 2019, 34(1): 207-215.

[35]

Vo LTT, Siroká B, Manian AP, et al. Functionalisation of Cellulosic Substrates by a Facile Solventless Method of Introducing Carbamate Groups[J]. Carbohyd. Polym., 2010, 82(4): 1 191-1 197.

[36]

Yin Y, Ma J, Tian X, et al. Cellulose Nanocrystals Functionalized with Amino-silane and Epoxy-poly(ethylene glycol) for Reinforcement and Flexibilization of Poly(lactic acid): Material Preparation and Compatibility Mechanism[J]. Cellulose, 2018, 25(11): 6 447-6 463.

[37]

Sreekumar PA, Al-Harthi MA, De SK. Effect of Glycerol on Thermal and Mechanical Properties of Polyvinyl Alcohol/Starch Blends[J]. J. Appl. Polym. Sci., 2011, 123(1): 135-142.

[38]

Azevedo Acnd Vaz MG, Gomes RF, et al. Starch/rice Husk Ash based Superabsorbent Composite: High Methylene Blue Removal Efficiency[J]. Iran. Polym., 2017, 26(2): 93-105.

[39]

Dean KM, Do MD, Petinakis E, et al. Key Interactions in Biodegradable Thermoplastic Starch/Poly(vinyl alcohol)/Montmorillonite Micro-and Nanocomposites[J]. Compos. Sci. Technol., 2008, 68(6): 1 453-1 462.

[40]

Huang X, Xie F, Xiong X. Surface-modified Microcrystalline Cellulose for Reinforcement of Chitosan Film[J]. Carbohyd. Polym., 2018, 201: 367-373.

[41]

Ling C, Guo L. Fabrication of High Nano-ZnO Assembled Cotton Fabric with UV Blocking Property[J]. J. Wuhan Univ. Technol., 2018, 33(6): 1 376-1 380.

[42]

Zhu J, Xiong J, Hu X, et al. Mechanical Properties and Wettability of Bagasse-reinforced Composite[J]. J. Wuhan Univ. Technol., 2019, 34(2): 312-316.

[43]

Cheetham NWH, Tao L. Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-ray powder Diffraction Study[J]. Carbohyd. Polym., 1998, 36(4): 277-284.

[44]

Hai TAP, Sugimoto R. Fabrication of Multicolor Fluorescent Polyvinyl Alcohol through Surface Modification with Conjugated Polymers by Oxidative Polymerization[J]. J. Appl. Sur. Sci., 2018, 443: 1-10.

[45]

Jiang X, Jiang T, Gan L, et al. The Plasticizing Mechanism and Effect of Calcium Chloride on Starch/Poly(vinyl alcohol) Films[J]. Carbohyd. Polym., 2012, 90(4): 1 677-1 684.

[46]

Prachayawarakorn J, Sangnitidej P, Boonpasith P. Properties of Thermoplastic Rice Starch Composites Reinforced by Cotton Fiber or Low-density Polyethylene[J]. Carbohyd. Polym., 2010, 81(2): 425-433.

[47]

Bonilla J, Fortunati E, Atarés L, et al. Physical, Structural and Antimicrobial Properties of Poly Vinyl Alcohol-chitosan Biodegradable Films[J]. Food Hydrocolloid, 2014, 35: 463-470.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/