High-temperature Compressive Performance of Mg Alloy Foams Coated with Ni-P Layer

Xiaotong Lu , Hongjie Luo , Zhigang Zhang , Hao Du , Wenzhan Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 805 -811.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 805 -811. DOI: 10.1007/s11595-020-2323-4
Metallic Materials

High-temperature Compressive Performance of Mg Alloy Foams Coated with Ni-P Layer

Author information +
History +
PDF

Abstract

Mg/Ni hybrid foams were fabricated by the electroless method. The Ni-P (Nickel-Phosphorous) coatings were deposited on the surface of closed-cell Mg alloy foams. The composition, microstructure and phases of the Ni-P coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The compressive tests were performed on the Mg/Ni hybrid foams at 400 °C using the Mg alloy foams as a reference. The experimental results show that the yield strength, plateau stress and energy absorption capacity of the closed-cell Mg alloy foams at high temperature were improved by the Ni-P coating. And there are four main modes for the Mg/Ni hybrid foam failure at 400 °C, i e, shearing in cell wall, bending in cell edge, shedding and cracking in Ni-P coating.

Keywords

Mg alloy foams / electroless plating / high temperature / compressive behavior / Ni-P coating

Cite this article

Download citation ▾
Xiaotong Lu, Hongjie Luo, Zhigang Zhang, Hao Du, Wenzhan Huang. High-temperature Compressive Performance of Mg Alloy Foams Coated with Ni-P Layer. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 805-811 DOI:10.1007/s11595-020-2323-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calmidi VV, Mahajan RL. The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams[J]. J. Heat Trans.-TAsme., 1999, 121(2): 466-471.

[2]

Chu RKM, Naguib HE, Atalla N. Synthesis and Characterization of Open-Cell Foams for Sound Absorption With Rotational Molding Method[J]. Polym. Eng. Sci., 2009, 49(9): 1 744-1 754.

[3]

Lu TJ, Stone HA, Ashby MF. Heat Transfer in Open-cell Metal Foams[J]. Acta. Mater., 1998, 46(10): 3 619-3 635.

[4]

Matsumoto R, Kanatani S, Utsunomiya H. Filling of Surface Pores of Aluminum Foam with Polyamide by Selective Laser Melting for Improvement in Mechanical Properties[J]. J. Mater. Process Tech., 2016, 273: 402-408.

[5]

Simone AE, Gibson LJ. Effects of Solid Distribution on the Stiffness and Strength of Metallic foams[J]. Acta. Mater., 1998, 46(6): 2 139-2 150.

[6]

Huang WZ, Luo HJ, Lin H, et al. Compressive Behavior and Damping Property of Mg Alloy/SiCp Composite Foams[J]. J. Mater. Eng. Perform., 2016, 25(2): 587-593.

[7]

Yang DH, Yang SR, Wang H, et al. Compressive Properties of Cellular Mg Foams Fabricated by Melt-foaming Method[J]. Mat. Sci. Eng. a-Struct., 2010, 527(21–22): 5 405-5 409.

[8]

Wang DQ. Relation of Cell Uniformity and Mechanical Property of a Close Cell Aluminum Foam[J]. Adv. Eng. Mater., 2013, 15(3): 175-179.

[9]

Ayuob MS, Jafar KA, Mohammad Y, et al. Fabrication of Aluminum Foams by using CaCO3 Foaming Agent[J]. Mater. Res. Express, 2018, 5(9): 096526

[10]

Lara-Rodriguez GA, Figueroa IA, Suarez MA, et al. A Replication-casting Device for Manufacturing Open-cell Mg Foams[J]. J. Mater. Process. Tech., 2017, 243: 16-22.

[11]

Jiang GF, He G. A New Approach to the Fabrication of Porous Magnesium with Well-controlled 3D Pore Structure for Orthopedic Applications[J]. Mat. Sci. Eng. C-Mater., 2014, 43: 317-320.

[12]

Yang DH, Guo SS, Chen JQ, et al. Fabrication of Cu-Mg Alloy Foam with Close Pore Structure by Gas Release Reaction Powder Metallurgical Approach[J]. J. Alloy. Compd., 2018, 766: 851-858.

[13]

Ulbin M, Vesenjak M, Borovinsek M, et al. Detailed Analysis of Closed-Cell Aluminum Alloy Foam Internal Structure Changes during Compressive Deformation[J]. Adv. Eng. Mater., 2018, 20(1800164): 1-8.

[14]

Bouwhuis BA, Mccrea JL, Palumbo G, et al. Mechanical Properties of Hybrid Nanocrystalline Metal Foams[J]. Acta. Mater., 2009, 57(14): 4 046-4 053.

[15]

Li ZD, Huang YJ, Wang XF, et al. Enhancement of Open Cell Aluminum Foams through Thermal Evaporating Zn Film[J]. Mater. Lett., 2016, 172: 120-124.

[16]

Boonyongmaneerat Y, Schuh CA, Dunand DC. Mechanical Properties of Reticulated Aluminum Foams with Electrodeposited Ni-W Coatings[J]. Scripta Mater., 2008, 59(3): 336-339.

[17]

Liu JA, Shi SQ, Zheng ZB, et al. Characterization and Compressive Properties of Ni/Mg Hybrid Foams[J]. Mat. Sci. Eng. a-Struct., 2017, 708: 329-335.

[18]

Zeng WW, Hou SH, Ding XJ, et al. Synthesis and Compression Property of Oxidation-Resistant Ni-Al Foams[J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(10): 47-54.

[19]

Wang W, Burgueno R, Hong JW, et al. Nano-deposition on 3D Open-cell Aluminum Foam Materials for Improved Energy Absorption Capacity[J]. Mat. Sci. Eng. a-Struct., 2013, 572: 75-82.

[20]

Banhart J, Baumeister J. Deformation Characteristics of Metal Foams[J]. J. Mater. Sci., 1998, 33(6): 1 431-1 440.

[21]

Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, 2nd ed[M], 1997 Cambridge, United Kingdom: Cambridge University Press. 175-231.

[22]

Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams[J]. Prog. Mater. Sci., 2001, 46(6): 559-563.

[23]

Pan Y, Yu G, Hu B, et al. Influence of Activation on Performance of Nickel-phosphorous Coating[J]. Surf. Eng., 2015, 31(9): 685-692.

[24]

Bulasara VK, Thakuria H, Uppaluri R, et al. Purkait, Combinatorial Performance Characteristics of Agitated Nickel Hypophosphite Electroless Plating Baths[J]. J. Mater. Process Tech., 2011, 211(9): 1 488-1 499.

[25]

Langford JI, Wilson AJC. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size[J]. J. Appli. Crystall., 1978, 11(7): 102-113.

[26]

Xu ZG, Fu JW, Luo TJ, et al. Effects of Cell Size on Quasi-static Compressive Properties of Mg Alloy Foams[J]. Mater. Des., 2012, 34: 40-44.

[27]

Xia XC, Zhao WM, Wei ZH, et al. Effects of Specimen Aspect Ratio on the Compressive Properties of Mg Alloy Foam[J]. Mater. Des., 2012, 42: 32-36.

[28]

Liu JA, Qu QX, Liu Y, et al. Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures[J]. J. Alloy. Compd., 2016, 676: 239-244.

[29]

Sahu S, Goel MD, Mondal DP, et al. High Temperature Compressive Deformation Behavior of ZA27-SiC Foam[J]. Mat. Sci. Eng. a-Struct., 2014, 607: 162-172.

[30]

Xia XC, Feng JL, Ding J, et al. Fabrication and Characterization of Closed-cell Magnesium-based Composite Foams[J]. Mater. Des., 2015, 74: 36-43.

[31]

He YD, Fu HF, Li XG, et al. Microstructure and Properties of Mechanical Attrition Enhanced Electroless Ni-P Plating on Magnesium Alloy[J]. Scripta Mater., 2008, 58(6): 504-507.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/