Kinetics and Mechanism of Oxidation Induced Contraction of MgAl2O4 Spinel Carbon Composites Reinforced by Al4C3 in situ Reaction

Mengyao Yang , Guoqing Xiao , Ding’ao Yang , Shouqian Yuan , Jizeng Zhao , Wei Zhao , Song Gao

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 778 -785.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 778 -785. DOI: 10.1007/s11595-020-2320-7
Cementitious Materials

Kinetics and Mechanism of Oxidation Induced Contraction of MgAl2O4 Spinel Carbon Composites Reinforced by Al4C3 in situ Reaction

Author information +
History +
PDF

Abstract

Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25 °C to 1 400 °C. It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1 400 °C is as follows: P=F(−2.75×10−4 A+2.13×10−3) lnt. The nonsteady diffusion kinetic equation of O2 at 1 400 °C inside the composites is as follows: J=D e lnt. Acceleration of the total diffusional flux of oxygen inside the composites at 1 400 °C is in inverse proportion to the oxidation time. The nonsteady state effective diffusion coefficient D e of O2(g) inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium. The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al. The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel. HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa, HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel. Its service life is two times as many as that of MgO-CaO brick.

Keywords

kinetics / mechanism / oxidation / contraction / MgAl2O4 spinel / carbon / Al4C3 in situ reaction

Cite this article

Download citation ▾
Mengyao Yang, Guoqing Xiao, Ding’ao Yang, Shouqian Yuan, Jizeng Zhao, Wei Zhao, Song Gao. Kinetics and Mechanism of Oxidation Induced Contraction of MgAl2O4 Spinel Carbon Composites Reinforced by Al4C3 in situ Reaction. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 778-785 DOI:10.1007/s11595-020-2320-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee WE, Robert EM. Evolution of in-situ Refractories in the 20th Century[J]. J. Am. Ceram. Soc., 1998, 81(6): 1 385-1 410.

[2]

Komarek KL, Coucoulas A, Klinger N. Reactions between Refractory Oxides and Graphite[J]. J. Electrochen. Soc., 1963, 110(7): 783-791.

[3]

Zhong Xiangchong. A New Generation of High Performance Refractory Ceramics[J]. Naihuo Cailiao, 2003, (1):1–10

[4]

Yang D, Yuan S, Jiang M, et al. Anisotropy of Expansion Coefficient and Slag Resistance of Spinel Carbon Bricks[J]. J. Wuhan Univ. Technol.-Mater Sci. Ed., 2006, 21(6): 142-145.

[5]

Yang D, Yuan S, Jiang M, et al. Effects of Aluminium Powder Additions on Properties of Corundum Composite[J]. Naihuo Cailiao, 2006, 40(6): 457-459.

[6]

Yang D, Yuan S, Jiang M, et al. Effect of Matrix Composition on Physical Properties of Al3CON in situ Reaction Reinforced Corundum Composite[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23(6): 927-931.

[7]

Watanabe A, Takahashi H, Nonobe K, et al. Test Results of Refractory Bricks for Pig Hot Metal Pretreatment Vessel[J]. Taikabutsu Overseas, 1986, (1): 22–25

[8]

Hirahara H, Kyoda H, Nishio H, et al. Using Results of Spinel-carbon Bricks in the Ladle[J]. Taikabutsu, 1979, 31(261): 509-510.

[9]

Ganesh I, Bhattacharjee S, Saha BP, et al. An Efficient MgAl2O4 Spinel Additive for Improved Slag Erosion and Penetration Resistance of High-AI2O3 and MgO-C Refractories[J]. Ceramics International, 2002, 28(3): 245-253.

[10]

Kashcheev ID, Semyannikov VP, Ve G, et al. Tests of Periclase-spinel-carbon Articles in the Lining of an IChKM-10-S1 Mixer[J]. Refractories & Industrial Ceramics, 1998, 39(5–6): 222-224.

[11]

Mukhopadhyay S, Ansar SA, Paul D, et al. Characteristics of Refractory Castables Containing Mullite and Spinel Coated Graphites[J]. Materials and Manufacturing Processes, 2012, 27(2): 177-184.

[12]

YANG Ding’ao. Effect of Addition of Al and Mg on Properties of Periclase-spinel-carbon Brick[J]. China’s Refractorie, 2000, (2): 23–28

[13]

Kashcheev ID, Pomortsev SA. Effect of Aluminum-magnesium Antioxidant on Periclase-carbon Object Properties[J]. Refractories and Industrial Ceramics, 2012, 53(4): 238-241.

[14]

Ma JJ, Li Y, Tong SH, et al. Effect of the Addition of Al Power on the Microstructure and Phase Constitution of Al2O3-MgO Composites Sintered at 1 700 C under N2 Atmosphere[J]. Key Engineering Materials, 2016, 697: 341-344.

[15]

Yamaguchi A. Thermochemical Analysis for Reaction Processes of Aluminium and Aluminium-compounds in Carbon Containing Refractories[J]. Taikabatsu, 1986, 38(8): 506-508.

[16]

Hironobu T, Tatsuo K, Hiroshi T, et al. Effect of Metallic Additive on the Reaction of Magnesia-carbon Brick[J]. Taikabutsu Overseas, 1985, 5(1): 21-23.

[17]

Xiaoyan P, Li L, He Z, et al. Effect of Metal Additives on Performance of Low-carbon Magnesia-carbon Materials[J]. China’s Refractories, 2007, 16(1): 25-29.

[18]

Lian J, Xiao G, Lv L, et al. Effect of Adding MgB2 on the Oxidation Resistance of MgO-C Refractories[J]. B.Chin.Ceram. Soc., 2011, 30(4): 869-874.

[19]

Faghihi-Sani M-A, Yamaguchi A. Formation of Spinel-carbon Composite Clinker[J]. J. Ceram. Soc.Jpn., 2007, 90(2): 509-515.

[20]

Watanabe A, Takashi H, Matsuki, et al. Effects of Adding Magnesium to Properties of Magnesia-carbon Bricks[J]. Taikabutsu Overseas, 1984, 4(3): 19-25.

[21]

Hironobu T, Tatsuo K, Hiroshi T, et al. Effect of Metallic Additive on the Reaction of Magnesia-carbon Brick[J]. Taikabutsu Overseas, 1985, 5(1): 21-27.

[22]

Yang Y, Jiang M, Yang D, et al. Effect of Mg/Al Ratios on Hydration Mechanism of Tabular Alumina Carbon Composites Reinforced by Al4C3 in situ Reaction[J]. J.Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32(4): 800-805.

[23]

Li X, Michel R, Stefan P. Oxidation Kinetics of Graphite Phase in Magnesia-carbon Refractories[J]. J. Am. Ceram. Soc., 1995, 78(4): 965-971.

[24]

Song K, Gao J, Jiang X, et al. Kinetic Equation based on Non-steady-state Diffusion of Oxygen in Solid Copper[J]. Trans. Nonferrous Met. Soc. China, 2005, 5(3): 589-593.

[25]

Ozgen OS. Kinetics of Oxidation of the Graphite Phase in Alumina-graphite Materials. I-Effect of Temperature and Initial Pore Structure at a Fixed Graphite Content[J]. Br. Ceram. Trans. J., 1985, (84): 70–76

[26]

Ozgen OS. Kinetics of Oxidation of the Graphite Phase in Alumina-graphite Materials. II -Materials with Different Graphite Content, Graphite Flake Size and with Clay or Carbon Bonds[J]. Br. Ceram. Trans. J., 1985, (84):213–218

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/