A Fiber Optic Sensor for 2,4-dichlorophenol Analysis based on Optical Composite Oxygen-sensitive Film

Yilin Tong , Zhihong Zeng , Kan Yu , Jiaqi Bao , Juanjuan Yin

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 743 -749.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 743 -749. DOI: 10.1007/s11595-020-2316-3
Advanced Materials

A Fiber Optic Sensor for 2,4-dichlorophenol Analysis based on Optical Composite Oxygen-sensitive Film

Author information +
History +
PDF

Abstract

A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol (DCP). The optical composite oxygen-sensitive film consists of tris(2,2′-bipyridyl) dichloro ruthenium(II) hexahydrate (Ru(bpy)3Cl2) as the fluorescence indicator and iron(III) tetrasulfophthalocyanine (Fe(III)PcTs) as bionic enzyme. A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i e, pH 6.0, 25 °C, Fe(III)PcTs concentration of 5.0·10−5 mol/L), the linear detection range, detection limit and response time of the fiber optic sensor are 3.0×10−7–9.0×10−5 mol/L, 4.8×10−8 mol/L(S/N=3), and 220 s, respectively. The sensor displays high selectivity, good repeatability and stability, which have good potentials in analyzing DCP concentration in practical water samples.

Keywords

2, 4-dichlorophenol / optical composite oxygen-sensitive film / fiber optic sensor / phase delay

Cite this article

Download citation ▾
Yilin Tong, Zhihong Zeng, Kan Yu, Jiaqi Bao, Juanjuan Yin. A Fiber Optic Sensor for 2,4-dichlorophenol Analysis based on Optical Composite Oxygen-sensitive Film. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 743-749 DOI:10.1007/s11595-020-2316-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agboola B, Ozoemena KI, Nyokong T. Hydrogen Peroxide Oxidation of 2-Chlorophenol and 2,4,5-trichlorophenol Catalyzed by Monomeric and Aggregated Cobalt Tetrasulfophthalocyanine[J]. J. Mol. Catal. A: Chem., 2005, 227(1–2): 209-216.

[2]

Iliev V, Mihaylova A, Bilyarska L. Photooxidation of Phenols in Aqueous Solution, Catalyzed by Mononuclear and Polynuclear Metal Phthalocyanine Complexis[J]. J. Mol. Catal. A: Chem., 2002, 184: 121-130.

[3]

Li DP, Tong YL, Huang J, et al. First Observation of Tetranitro Iron(II) Phthalocyanine Catalyzed Oxidation of Phenolic Pollutant Assisted with 4-Aminoantipyrine using Dioxygen as Oxidant[J]. J. Mol. Catal. A: Chem., 2011, 345: 108-116.

[4]

Mckinley R, Plant JA, Bell JNB, et al. Endocrine Disrupting Pesticides: Implications for Risk Assessment[J]. Environment International, 2008, 34(4): 168-172.

[5]

Mehmood Z, Kelly DE, Kelley SL. Cytochrome P450 3A4 Mediated Metabolism of 2,4-Dichlorophenol[J]. Chemosphere, 1997, 31(18): 2 281-2 291.

[6]

Niu JF, Xu JJ, Dai YR, et al. Immobilization of Horseradish Peroxidase by Electrospun Fibrous films for Adsorption and Degradation of Pentachlorophenol in Water[J]. J. Hazard. Mater., 2013, 246: 119-125.

[7]

Wu L, Li A, Gao GD, et al. Efficient Photodegradation of 2,4-Dichlorophenolin Aqueous Solution Catalyzed by Polydivinylbenzene-supported Zinc Phthalocyanine[J]. J. Mol. Catal. A: Chem., 2007, 269: 183-189.

[8]

Agboola B, Ozoemena KI, Nyokong T. Comparative Efficiency of Immobilized Non-transition Metal Phthalocynine Photosensitizers for the Visible Light Transformation of Chlorophenols[J]. J. Mol. Catal. A: Chem., 2006, 248: 84-92.

[9]

Peng JF, Liu JF, Hu XL. Direct Determination of Chlorophenols in Environmental Water Samples by Hollow Fiber Supported Ionic Liquid film Extraction Coupled with High-performance Liquid Chromatography[J]. J. Chromatogr. A., 2007, 1139: 165-170.

[10]

Gurka DF, Pyle S, Titus R. Environmental Applications of Gas Chromatography/Atomic Emission Detection[J]. Anal. Chem., 1997, 69(21): 2 411-2 415.

[11]

Campillo N, Aguinaga N, ViñAs P, et al. Capillary Gas Chromatography with Atomic Emission Detection for Determining Chlorophenols in Water and Soil Samples[J]. Anal. Chim. Acta., 2005, 552: 182-189.

[12]

Alberici RM, Sparrapan R, Jardim WF, et al. Selective Trace Lever Analysis of Phenolic Compounds in Water by Flow Injection Analysis — film Introduction Mass Spectrometry[J]. Environ. Sci. Technol., 2001, 35(8): 2 084-2 088.

[13]

Santana CM, Padrón MET, Ferrera ZS, et al. Development of a Solid-phase Microextraction Method with Micellar Desorption for the Determination of Chlorophenols in Water Samples-comparison with Conventional Solid-phase Microextraction method[J]. J. Chromatogr. A, 2007, 1140: 13-20.

[14]

Wang J, Chen G, Chatrathi MP, et al. Capillary Electrophoresis Microchip with a Carbon Nanotube-modified Electrochemical Detector[J]. Anal. Chem., 2004, 76: 298-302.

[15]

Muna GW, Quaiserová-Mocko V, Swain GM. Chlorinated Phenol Analysis Using Off-line Solid-phase Extraction and Capillary Electrophoresis Coupled with Amperometric Detection and a Boron-doped Diamond Microelectrode[J]. Anal.Chem., 2005, 77(21): 6 542-6 548.

[16]

Ozkan D, Kerman K, Meric B, et al. Heterostructured Fluorohectorite Clay as an Electrochemical Sensor for the Detection of 2,4-dichlorophenol and the Herbicide 2,4-Dichlorophenolin[J]. Chem. Mater., 2002, 14(8): 1 755-1 761.

[17]

Hendricks NR, Waryo TT, Arotiba O, et al. Microsomal Cytochrome P450-3A4 (CYP3A4) Nanobiosensor for the Determination of 2,4-Dichlorophenol-An Endocrine Disruptor Compound[J]. Electrochim. Acta., 2009, 54(5): 1 925-1 931.

[18]

Jantra J, Zilouei H, Liu J, et al. Microbial Biosensor for the Analysis of 2,4-Dichlorophenol[J]. Anal. Lett., 2005, 38(7): 1 071-1 083.

[19]

Figmegos YC, Stalikas CD, Karayannis MI, et al. Synthesis and Analytical Application of 4-Aminopyrazolone Derivatives as Chromogenic Agents for the Spectrophotometric Determination of Phenols[J]. Anal. Chim. Acta., 2000, 403: 315-323.

[20]

Doong RA, Tsai HC. Immobilization and Characterization of Sol-Gel-encapsulated Acetylcholinesterase Fiber-optic Biosensor[J]. Anal Chim. Acta., 2001, 434: 239-246.

[21]

Singh S, Mishra SK, Gupta BD. SPR Based Fibre Optic Biosensor for Phenolic Compounds Using Immobilization of Tyrosinase in Polyacrylamide Gel[J]. SensorActuat B-Chem., 2013, 186: 388-396.

[22]

Tong YL, Li DP, Huang J. A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine[J]. Bull. Korean Chem. Soc., 2013, 34(11): 3 307-3 311.

[23]

Ali H, Langlois R, Wagner JR, et al. Biological Activities of Phthalocyanines—X. Syntheses and Analyses of Sulfonated phthalocyanines[J]. Photochem. Photobiol., 1988, 47(8): 713-717.

[24]

Huang J, Wang HL, Li DP, et al. A New Immobilized Glucose Oxidase Using SiO2 Nanoparticles as Carrier[J]. Mater. Sci. Eng. C, 2011, 31(5): 1 374-1 378.

[25]

Huang J, Fang H, Liu C, et al. A Novel Fiber Optic Biosensor for the Determination of Adrenaline based on Immobilized Laccase Catalysis[J]. Anal. Lett., 2008, 41: 1 430-1 442.

[26]

Bazzan G, Deneault JR, Kang TS, et al. Nanoparticle/dye Interface Optimization in Dye-sensitized Solar Cells[J]. Advanced Functional Materials, 2011, 21(17): 3 268-3 274.

[27]

Wang YH, Tong YL, Huang J, et al. A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Iron(II) Phthalocyanine Catalysis[J]. J. of Wuhan Uni. of Tech.-Mater. Sci. Ed., 2015, 30(6): 1 317-1 320.

[28]

Agboola B, Ozoemena KI, Nyokong T. Hydrogen Peroxide Oxidation of 2-Chlorophenol and 2,4,5-Trichlorophenol Catalyzed by Monomeric and Aggregated Cobalt Tetrasulfophthalocyanine[J]. J. Mol. Catal. A: Chem., 2005, 227: 209-216.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/