Calibration of Binding Energy Positions with C1s for XPS Results

De Fang , Feng He , Junlin Xie , Lihui Xue

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 711 -718.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 711 -718. DOI: 10.1007/s11595-020-2312-7
Advanced Materials

Calibration of Binding Energy Positions with C1s for XPS Results

Author information +
History +
PDF

Abstract

The adventitious carbon located at 284.8 eV was used to calibrate samples without the carbon themselves. When the carbon is as a major part of the inorganic material, the adventitious carbon should be identified and used as the reference. There is no adventitious carbon on the surfaces of the polymer materials, so using C1s of the carbon in the polymer itself to calibrate the charging effect is reasonable. Furthermore, compared with gold and argon, a more practical and convenient method based on C1s is proposed to get the right positions for binding energy peaks.

Keywords

XPS / calibration / charging effect / binding energy / C1s

Cite this article

Download citation ▾
De Fang, Feng He, Junlin Xie, Lihui Xue. Calibration of Binding Energy Positions with C1s for XPS Results. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 711-718 DOI:10.1007/s11595-020-2312-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Trinh QT, Bhola K, Amaniampong PN, et al. Synergistic Application of XPS and DFT to Investigate Metal Oxide Surface Catalysis[J]. Journal of Physical Chemistry C, 2018, 122: 22 397-22 406.

[2]

Wan Q, Liu N, Yang B, et al. Influence of Si Content on Properties of Ti(1−x)SixN Coatings[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2019, 34: 774-780.

[3]

Paparazzo E. Some Notes on XPS Ce3d Spectra of Cerium-bearing Catalysts[J]. Chemical Engineering Journal, 2011, 170: 342-343.

[4]

Bournel F, Laffon C, Parent P, et al. Adsorption of Some Substituted Ethylene Molecules on Pt(111) at 95 K: NEXAFS, XPS and UPS Studies[J]. Surface Science, 1996, 350: 1-3.

[5]

Liu Q, Zhang SC, Li EM, et al. Facile Fabrication of Fe2O3/Nitrogen Deficient g-C3N4−x Composite Catalysts with Enhanced Photocatalytic Performances[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2019, 34: 1 018-1 023.

[6]

Powell CJ, Jablonski A. Surface Sensitivity of Auger-electron Spectroscopy and X-ray Photoelectron Spectroscopy[J]. Surface and Interface Analysis, 2011, 17: 170-176.

[7]

Powell CJ, Jablonski A. Surface Sensitivity of X-ray Photoelectron Spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601: 54-65.

[8]

Fouquet MW, Butcher KSA. High-sensitivity X-ray Photoelectron Spectroscopy Characterization of a Quantum Device Structure[J]. Journal of Vacuum Science & Technology A, 2002, 20: 2 131-2 133.

[9]

Wagner CD, Naumkin AV, Vass AK, et al. NIST Standard Reference Database 20, Version 3.4 (web version) (http://srdata.nist.gov/xps/), 2003

[10]

Wagner CD, Riggs WM, Davis LE, et al. Handbook of X-ray Photoelectron Spectroscopy[M], 1979 Minnesota, USA: Perkin-Elmer Corp..

[11]

Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-ray Photoelectron Spectroscopy[M], 1992 Minnesota, USA: Perkin-Elmer Corp..

[12]

Zschornack G. Handbook of X-Ray Z)ata[M], 2006 Berlin, Germany: Springer Corp..

[13]

Tielsch BJ, Fulghum JE. Differential charging in XPS. Part I: Demonstration of Lateral Charging in a Bulk Insulator using Imaging XPS[J]. Surface and Interface Analysis, 1996, 24: 28-33.

[14]

Tielsch BJ, Fulghum JE, Surman DJ. Differential Charging in XPS. Part II: Sample Mounting and X-ray Flux Effects on Heterogeneous Samples[J]. Surface and Interface Analysis, 1996, 24: 459-468.

[15]

Tielsch BJ, Fulghum JE. Differential Charging in XPS. Part III. A Comparison of Charging in Thin Polymer Overlayers on Conducting and Non-conducting Substrates[J]. Surface and Interface Analysis, 1997, 25: 904-912.

[16]

Cazaux J. Secondary Electron Emission and Fundamentals of Charging Mechanisms in XPS[J]. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178–179: 357-372.

[17]

Xu SY, Ma XX, Sun MR. Correction of Charging Effect on Structure Analyse of BCN Films by XPS[J]. China Surface Engineering, 2006, 1: 16-20.

[18]

Ding HB, Yin CS, Cai WS, et al. Determination of the Shift of Binding Energy of XPS by Wavelet Transform[J]. Chinese Journal of Analysis Laboratory, 1999, 18: 18-21.

[19]

Seah MP. Summary of ISO/TC 201 Standard: VII ISO 15472: 2001-surface Chemical Analysis-X-ray Photoelectron Spectrometers-calibration of Energy Scales[J]. Surface and Interface Analysis, 2001, 31: 721-723.

[20]

Watts JF, Wolstenholme J. Applications of Electron Spectroscopy in Materials Science-An Introduction to Surface Analysis by XPS and AES[M], 2003 Chichester, UK: John Wiley & Sons Ltd..

[21]

Lesiak B, Kover L, Toth J, et al. C sp2/sp3 Hybridisations in Carbon Nanomaterials-XPS and (X)AES Study[J]. Applied Surface Science, 2018, 452: 223-231.

[22]

Kohiki S, Ohmure T, Kusao K. Appraisal of a New Charge Correction Method in X-ray Photoelectron Spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 1983, 31: 85-90.

[23]

Lu H, Bao CL, Shen DH, et al. Studies of Cr/Al2O3 Interfacial Reactions[J]. Journal of Physics and Chemistry of Solids, 1997, 58: 257-270.

[24]

Brunckova H, Kanuchova M, Kolev H, et al. XPS Characterization of SmNbO4 and SmTaO4 Precursors Prepared by Sol-gel Method[J]. Applied Surface Science, 2019, 473: 1-5.

[25]

Kateryna A. Spectra Calibration in XPS[OL]. http://www.unm.edu/~kartyush/research_xps.xhtml

[26]

Huang HZ, Guo QL, Gui LL. Gold-decorating Amount Correction Curve Used for Charging Shift Calibration in XPS[J]. Chinese Journal of Analytical Chemistry, 1986, 14: 671-676.

[27]

Charles DJ, Danielle G, Philippe V, et al. Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides[J]. Physical Chemistry Chemical Physics, 2000, 2: 1 319-1 324.

[28]

Charton P, Gengembre L, Armand P. TeO2-WO3 Glasses: Infrared XPS and XANES Structural Characterizations[J]. Journal of Solid State Chemistry, 2002, 168: 175-183.

[29]

Vemuri RS, Engelhard MH, Ramana CV. Correlation between Surface Chemistry, Density, and Band Gap in Nanocrystalline WO3 Thin Films[J]. ACS Applied Materials & Interfaces, 2012, 4: 1 371-1 377.

[30]

Greczynsk G, Primetzhofer D, Hultman L. Reference Binding Energies of Transition Metal Carbides by Core-level X-ray Photoelectron Spectroscopy Free from Ar+ Etching Artefacts[J]. Applied Surface Science, 2018, 436: 102-110.

[31]

Balazsi K. Magnetron Sputtered TiC/a:C Nanocomposite Thin Films: Deposition Parameters vs. Properties[J]. Vacuum, 2019, 164: 121-125.

[32]

Zhou JW, Zhang C, Niu TX, et al. Facile Synthesis of Reusable Magnetic Fe/Fe3C/C Composites from Renewable Resources for Super-fast Removal of Organic Dyes: Characterization, Mechanism and Kinetics[J]. Powder Technology, 2019, 351: 314-324.

[33]

Zou MZ, Wang LL, Li JX, et al. Enhanced Li-ion Battery Performances of Yolk-shell Fe3O4@C Anodes with Fe3C Catalyst[J]. Electrochimica Acta, 2017, 233: 85-91.

[34]

Wang H, Gu GH, Qiu GZ. Evaluation of Surface Free Energy of Polymers by Contact Angle Goniometry[J]. Journal of Central South University of Technology, 2006, 37: 942-947.

[35]

Rojewska M, Bartkowiak A, Strzemiecka B, et al. Surface Properties and Surface Free Energy of Cellulosic etc Mucoadhesive Polymers[J]. Carbohydrate Polymers, 2017, 171: 152-162.

[36]

Briggs D, Fairley N. XPS of Chemically Modified Low-density Polyethylene Surfaces: Observations on Curve-fitting the C1s Spectrum[J]. Surface and Interface Analysis, 2002, 33: 283-290.

[37]

Kondyurin A, Kondyurina I, Bilek M. Radiation Damage of Polyethylene Exposed in the Stratosphere at an Altitude of 40 km[J]. Polymer Degradation and Stability, 2013, 98: 1 526-1 536.

[38]

Dorey S, Gaston F, Marque S A, et al. XPS Analysis of PE and EVA Samples Irradiated at Different γ-doses[J]. Applied Surface Science, 2018, 427: 966-972.

[39]

Amor SB, Jacquet M, Fioux P, et al. XPS Characterisation of Plasma Treated and Zinc Oxide Coated PET[J]. Applied Surface Science, 2009, 255: 5 052-5 061.

[40]

Vesel A, Mozetic M, Zalar A. XPS Study of Oxygen Plasma Activated PET[J]. Vacuum, 2007, 82: 248-251.

[41]

Golshaei P, Guven O. Chemical Modification of PET Surface and Subsequent Graft Copolymerization with Poly(N-isopropylacrylamide)[J]. Reactive and Functional Polymers, 2017, 118: 26-34.

[42]

Bhatia QS, Burrell MC, Chera JJ. XPS Surface Studies of Injection-molded Poly(phenylene ether)/Nylon 6,6 and Poly(phenylene ether)/HIPS Blends[J]. Journal of Applied Polymer Science, 1992, 46: 1 915-1 925.

[43]

Kuzminova A, Shelemin A, Kylian O, et al. Study of the Effect of Atmospheric Pressure Air Dielectric Barrier Discharge on Nylon 66 Foils[J]. Polymer Degradation and Stability, 2014, 110: 378-388.

[44]

Dong L, Liu XD, Xiong ZR, et al. Design of UV-absorbing PVDF Membrane via Surface-initiated AGET ATRP[J]. Applied Surface Science, 2018, 435: 680-686.

[45]

Meng JQ, Chen CL, Huang LP, et al. Surface Modification of PVDF Membrane via AGET ATRP Directly from the Membrane Surface[J]. Applied Surface Science, 2011, 257: 6 282-6 290.

AI Summary AI Mindmap
PDF

630

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/