Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries

Yanjia He , Zibo Du , Yong Su , Junxi Yu , Feifan Chen , Shuhong Xie , Jun’an Pan

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 665 -670.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (4) : 665 -670. DOI: 10.1007/s11595-020-2304-7
Advanced Materials

Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries

Author information +
History +
PDF

Abstract

We displayed that the low-cost natural zeolite with molecular sieve structure can be used as the carrier of sulfur in lithium-sulfur batteries. Meanwhile, a simple salt-washing method was implemented on zeolite for dredging the internal microchannel to improve the ability of adsorption, ion exchange and sulfur loading. The experimental results show that the first specific discharge capacities of zeolite/S and salt-washed zeolite/S cathode under 0.2 C current density are 950.7 and 1 116.8 mAh/g, respectively, and corresponding discharge capacities remain at 350.6 and 604.2 mAh/g after 300 cycles. The first specific discharge capacity of salt-washed zeolite/S composite is 17.5% higher than that sample without salt-washing, and the corresponding ionic conductivity is improved.

Keywords

zeolite / salt-washing / internal microchannel / lithium-sulfur battery

Cite this article

Download citation ▾
Yanjia He, Zibo Du, Yong Su, Junxi Yu, Feifan Chen, Shuhong Xie, Jun’an Pan. Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(4): 665-670 DOI:10.1007/s11595-020-2304-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bruce PG, Freunberger SA, Hardwick LJ, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. NatureMaterials, 2012, 11(1): 19

[2]

Ji X, Lee KT, Nazar LF. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-sulphur Batteries[J]. Nature Materials, 2009, 8(6): 500

[3]

Huang C, Xiao J, Shao Y, et al. Manipulating Surface Reactions in Lithium-sulphur Batteries using Hybrid Anode Structures[J]. Nature Communications, 2014, 5: 3015.

[4]

Schuster J, He G, Mandlmeier B, et al. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-sulfur Batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3 591-3 595.

[5]

Li Z, Zou Y, Duan J, et al. Coral-like Cop Hollow Composites as Effective Host Cathodes for Lithium-sulfur Batteries[J]. Ionics, 2019: 1–11

[6]

DöRfler S, Hagen M, Althues H, et al. High Capacity Vertical Aligned Carbon Nanotube/Sulfur Composite Cathodes for Lithium-sulfur Batteries[J]. Chemical Communications, 2012, 48(34): 4 097-4 099.

[7]

Li Z, Zou Y, Duan J, et al. Long-cycle Stability for Li-S Batteries by Carbon Nanofibers/Reduced Graphene Oxide as Host Cathode Material[J]. Ionics, 2019: 1–10

[8]

Wang JZ, Lu L, Chousair M, et al. Sulfur-graphene Composite for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2011, 196(16): 7 030-7 034.

[9]

Ji X, Evers S, Black R, et al. Stabilizing Lithium-sulphur Cathodes Using Polysulphide Reservoirs[J]. Nature Communications, 2011, 2: 325.

[10]

Hayashi H, Cote AP, Furukawa H, et al. Zeolite A Imidazolate Frameworks[J]. Nature Materials, 2007, 6(7): 50

[11]

Kubů M, ŽIlková N, Zones SI, et al. Three-dimensional 10-Ring Zeolites: The Activities in Toluene Alkylation and Disproportionation[J]. Catalysis Today, 2016, 259: 97-106.

[12]

Fechete I, Wang Y, VéDrine JC. The Past, Present and Future of Heterogeneous Catalysis[J]. Catalysis Today, 2012, 189(1): 2-27.

[13]

Baerlocher C, Mccusker LB, Olson DH. Atlas of Zeolite Framework Types[M]. Elsevier, 2007

[14]

Blum Z. Utilization of Zeolite Y in the Removal of Anionic, Cationic and Nonionic Detergents during Purification of Proteins[J]. Biotechnology Techniques, 1991, 5(1): 49-54.

[15]

Masters AF, Maschmeyer T. Zeolites-From Curiosity to Cornerstone[J]. Microporous and Mesoporous Materials, 2011, 142(2–3): 423-438.

[16]

Nunes-Pereira J, Lopes AC, Costa CM, et al. Microporous Membranes of Nay Zeolite/Poly (Vinylidene Fluoridetrifluoroethylene) for Li-ion Battery Separators[J]. Journal of Electroanalytical Chemistry, 2013, 689: 223-232.

[17]

Yue Y, Guo B, Qiao ZA, et al. Multiwall Carbon Nanotube@ Zeolite Imidazolate Framework Composite from a Nanoscale Zinc Oxide Precursor[J]. Microporous and Mesoporous Materials, 2014, 198: 139-143.

[18]

Davis ME, Lobo RF. Zeolite and Molecular Sieve Synthesis[J]. Chemistry of Materials, 1992, 4(4): 756-768.

[19]

Perić J, Trgo M, Medvidović NV. Removal of Zinc, Copper and Lead by Natural Zeolite-A Comparison of Adsorption Isotherms[J]. Water research, 2004, 38(7): 1 893-1 899.

[20]

ÖRen AH, Kaya A. Factors Affecting Adsorption Characteristics of Zn2+ on Two Natural Zeolites[J]. Journal of Hazardous Materials, 2006, 131(1–3): 59-65.

[21]

Merrikhpour H, Jalali M. Comparative and Competitive Adsorption of Cadmium, Copper, Nickel, and Lead Ions by Iranian Natural Zeolite[J]. Clean Technologies and Environmental Policy, 2013, 15(2): 303-316.

[22]

Han R, Zhang J, Han P, et al. Study of Equilibrium, Kinetic and Thermodynamic Parameters about Methylene Blue Adsorption onto Natural Zeolite[J]. Chemical Engineering Journal, 2009, 145(3): 496-504.

[23]

Wajima T. Ion Exchange Properties of Japanese Natural Zeolites in Seawater[J]. Analytical Sciences, 2013, 29(1): 139-141.

[24]

ĆUrković L, Cerjan-Stefanović Š, Filipan T. Metal Ion Exchange by Natural and Modified Zeolites[J]. Water Research, 1997, 31(6): 1 379-1 382.

[25]

Chen X, Wang Y, Wang Y, et al. Hierarchical High-porosity Graphene Oxide-porous Carbon/Sulfur Composite with Sodium Chloride as Temporary Space Holders for High-performance Lithium-sulfur Batteries[J]. Chem. Electro. Chem., 2019, 6(10): 2 667-2 674.

[26]

Sukharenko VI, Usenko SI, Borisova LI, et al. Studying the Composition and Properties of Zeolitecontaining Rocks of Tatarshatrashane Occurrence[M]. Book of Abstracts, 2006: 226

[27]

Ye H, Yin YX, Xin S, et al. Tuning the Porous Structure of Carbon Hosts for Loading Sulfur toward Long Lifespan Cathode Materials for Li-S Batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6 602-6 608.

[28]

Wu Y, Xu C, Guo J, et al. Enhanced Electrochemical Performance by Wrapping Graphene on Carbon Nanotube/Sulfur Composites for Rechargeable Lithium-sulfur Batteries[J]. Materials Letters, 2014, 137: 277-280.

[29]

Li GC, Li GR, Ye SH, et al. A Polyaniline-coated Sulfur/Carbon Composite with an Enhanced High-rate Capability as a Cathode Material for Lithium/Sulfur Batteries[J]. Advanced Energy Materials, 2012, 2(10): 1 238-1 245.

[30]

Wang J, Liu L, Ling Z, et al. Polymer Lithium Cells with Sulfur Composites as Cathode Materials[J]. Electro. Chimica. Acta, 2003, 48(13): 1 861-1 867.

[31]

Wei Y, Yan Y, Zou Y, et al. The Ternary PANI@ BDC/S Composite Cathode with Enhanced Electrochemical Performance in Lithium-sulfur Batteries[J]. Journal of Electroanalytical Chemistry, 2019

[32]

Lasia A. Electrochemical Impedance Spectroscopy and Its Applications[M]. Modern Aspects of Electrochemistry, 2002: 143–248

[33]

Stoller MD, Ruoff RS. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1 294-1 301.

[34]

Wang Y, Huang J, Chen X, et al. Powder Metallurgy Template Growth of 3D N-Doped Graphene Foam as Binder-free Cathode for High-performance Lithium/Sulfur Battery[J]. Carbon, 2018, 137: 368-378.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/