Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier

Shouxia Wang , Zhiyi Hu , Jie Hu , Zhiming Qiu , Junli Li , Wei Geng , Baolian Su , Xiaoyu Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (3) : 658 -664.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (3) : 658 -664. DOI: 10.1007/s11595-020-2303-8
Biomaterials

Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier

Author information +
History +
PDF

Abstract

We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.

Keywords

core-shell structure / mesoporous silica materials / controlled drug release

Cite this article

Download citation ▾
Shouxia Wang, Zhiyi Hu, Jie Hu, Zhiming Qiu, Junli Li, Wei Geng, Baolian Su, Xiaoyu Yang. Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(3): 658-664 DOI:10.1007/s11595-020-2303-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeong B, Bae Y H, Lee D S, et al. Biodegradable Block Copolymers as Injectable Drug-Delivery Systems. Nature, 1997, 388(6445): 860-862.

[2]

Das M, Mardyani S, Chan W C W, et al. Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design. Adv. Mater., 2006, 18(1): 80-83.

[3]

Xiong M, Bao Y, Yang X, et al. Lipase-Sensitive Polymeric Triple-Layered Nanogel for “On-Demand” Drug Delivery. J. Am. Chem. Soc., 2012, 134(9): 4 355-4 362.

[4]

Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric Systems for Controlled Drug Release. Chem. Rev., 1999, 99(11): 3 181-3 198.

[5]

Ekladious I, Colson Y L, Grinstaff M W. Polymer-Drug Conjugate Therapeutics: Advances, Insights and Prospects. Nat. Rev. Drug. Discov., 2019, 18(4): 273-294.

[6]

Bai Y, Teng B, Chen S, et al. Preparation of Magnetite Nanoparticles Coated with an Amphiphilic Block Copolymer: A Potential Drug Carrier with a Core-Shell-Corona Structure for Hydrophobic Drug Delivery. Macromol. Rapid. Comm., 2006, 27(24): 2 107-2 112.

[7]

Uekama K, Hirayama F, Irie T. Cyclodextrin Drug Carrier Systems. Chem. Rev., 1998, 98(5): 2 045-2 076.

[8]

Zhang X, Hao L, Wang H, et al. Preparation and Characterization of Superparamagnetic Fe3O4/CNTs Nanocomposites Dual-Drug Carrier. J. Wuhan. Univ. Technol., 2017, 32(1): 42-46.

[9]

Wang W, Wang Y, Wang Y, et al. Preparation and Characterization of Carboxyl Functionalized Fluorescent Mesoporous Silica Nanoparticles Containing 8-Hydroxyquinolinate Zinc Complexes. J. Wuhan. Univ. Technol., 2019, 34(4): 973-978.

[10]

Langer R, Folkman J. Polymers for the Sustained Release of Proteins and Other Macromolecules. Nature, 1976, 263(5580): 797-800.

[11]

Kamaly N, Yameen B, Wu J, et al. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev., 2016, 116(4): 2 602-2 663.

[12]

Xu H, Cao W, Zhang X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Acc. Chem. Res., 2013, 46(7): 1 647-1 658.

[13]

Nayak S, Lee H, Chmielewski J, et al. Folate-Mediated Cell Targeting and Cytotoxicity Using Thermoresponsive Microgels. J. Am. Chem. Soc., 2004, 126(33): 10 258-10 2591.

[14]

Cai K, He X, Song Z, et al. Dimeric Drug Polymeric Nanoparticles with Exceptionally High Drug Loading and Quantitative Loading Efficiency. J. Am. Chem. Soc., 2015, 137(10): 3 458-3 461.

[15]

Petros R A, Desimone J M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug. Discov., 2010, 9(8): 615-627.

[16]

Ulbrich K, Holá K, Šubr V, et al. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev., 2016, 116(9): 5 338-5 431.

[17]

Wang Y, Gao S, Ye W, et al. Co-Delivery of Drugs and DNA from Cationic Core-Shell Nanoparticles Self-Assembled from a Biodegradable Copolymer. Nat. Mater., 2006, 5(10): 791-796.

[18]

Elsabahy M, Heo G S, Lim S-M, et al. Polymeric Nanostructures for Imaging and Therapy. Chem. Rev., 2015, 115(19): 10 967-11 011.

[19]

Zhang Q, Lee I, Joo J B, et al. Core-Shell Nanostructured Catalysts. Acc. Chem. Res., 2013, 46(8): 1 816-1 824.

[20]

Seo W S, Lee J H, Sun X, et al. FeCo/Graphitic-Shell Nanocrystals as Advanced Magnetic-Resonance-Imaging and Near-Infrared Agents. Nat. Mater., 2006, 5(12): 971-976.

[21]

Zhang F, Braun G B, Shi Y, et al. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles. J. Am. Chem. Soc., 2010, 132(9): 2 850-2 851.

[22]

Laurent S, Forge D, Port M, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev., 2008, 108(6): 2 064-2 110.

[23]

Shah B, Yin P T, Ghoshal S, et al. Multimodal Magnetic Core-Shell Nanoparticles for Effective Stem-Cell Differentiation and Imaging. Angew. Chem., 2013, 52(24): 6 190-6 195.

[24]

Lu Y, Cheng X, Tian G, et al. Hierarchical CdS/m-TiO2/G Ternary Photocatalyst for Highly Active Visible Light-Induced Hydrogen Production from Water Splitting with High Stability. Nano Energy, 2018, 47: 8-17.

[25]

Yang X, Li Y, Van Tendeloo G, et al. One-Pot Synthesis of Catalytically Stable and Active Nanoreactors: Encapsulation of Size-Controlled Nanoparticles within a Hierarchically Macroporous Core@Ordered Mesoporous Shell System. Adv. Mater., 2009, 21(13): 1 368-1 372.

[26]

Gawande M B, Goswami A, Asefa T, et al. Core-Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Soc. Rev., 2015, 44(21): 7 540-7 590.

[27]

Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of Optical Resonances. Chem. Phys. Lett., 1998, 288(2–4): 243-247.

[28]

Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev., 2004, 104(1): 293-346.

[29]

Yang X, Chen L, Li Y, et al. Hierarchically Porous Materials: Synthesis Strategies and Structure Design. Chem. Soc. Rev., 2017, 46(2): 481-558.

[30]

Singh N, Karambelkar A G L, et al. Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release. J. Am. Chem. Soc., 2011, 133(49): 19 582-19 585.

[31]

Paris J L, Cabañas M V, Manzano M, et al. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano, 2015, 9(11): 11 023-11 033.

[32]

Slowing I I, Vivero-Escoto J L, Wu C-W, et al. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug. Del. Rev., 2008, 60(11): 1 278-1 288.

[33]

Ryu J-H, Jiwpanich S, Chacko R, et al. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. J. Am. Chem. Soc., 2010, 132(24): 8 246-8 247.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/