Characterization of YSZ Ceramic Nanopowders Synthesized at Different Temperatures via Polyacrylamide Gel Method

Ting Liu , Weidong Chen , Hongmin Ju , Shufang Yan , Wen Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (3) : 528 -534.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (3) : 528 -534. DOI: 10.1007/s11595-020-2289-2
Advanced Materials

Characterization of YSZ Ceramic Nanopowders Synthesized at Different Temperatures via Polyacrylamide Gel Method

Author information +
History +
PDF

Abstract

Tetragonal zirconia (T-ZrO2) ceramic nanopowders stabilized with 3 mol% Y2O3 were synthesized via polyacrylamide gel method, using ZrOCl2·8H2O and Y(NO3)3·6H2O as raw materials. The effect of temperature on phase composition and morphology of YSZ nanopowders and sintering behavior of YSZ ceramics was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Vickers hardness tester. The aging-resistance of YSZ ceramics was measured by means of aging experiments. The results demonstrated that the phase composition of YSZ ceramic nanopowders had no obvious change and it was composed of T-ZrO2. Particle size of well-dispersed YSZ ceramic nanopowders increased from 17 to 35 nm with increasing calcining temperature from 600 to 800 °C. There was noticeable negative correlation between calcining temperature and the relative density of YSZ ceramic at the same sintering temperature. The aging experiments showed that water vapor facilitated tetragonal to monoclinic phase transformation, and the sample that had smaller grain size exhibited better aging-resistance. It can be concluded that when the calcining temperature is 600 C and sintering temperature is 1 550 C, the relative density and hardness of YSZ ceramic arrive at the peak of 96.64% and 11.135 GPa respectively, and it has less microcracks and excellent aging-resistance.

Keywords

YSZ nanopowders / polyacrylamide gel method / sintering behavior / aging-resistance / grain size

Cite this article

Download citation ▾
Ting Liu, Weidong Chen, Hongmin Ju, Shufang Yan, Wen Ma. Characterization of YSZ Ceramic Nanopowders Synthesized at Different Temperatures via Polyacrylamide Gel Method. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(3): 528-534 DOI:10.1007/s11595-020-2289-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia J F, Nian H Q, Liu W, et al. Synthesis, Sintering Behavior, Structure, and Electrical Properties of 5YSZ Electrolyte. J. Mater. Eng. Perform., 2015, 24(9): 3 291-3 299.

[2]

Tahmasebpour M, Babaluo A A, Aghjeh M K R. Synthesis of Zirconia Nanopowders from Various Zirconium Salts via Polyacrylamide Gel Method. J. Eur. Ceram. Soc., 2008, 28(4): 773-778.

[3]

Răileanu M, Todan L, Crişan D, et al. Sol-gel Zirconia Nanopowders with α-cyclodextrin as Organic Additive. J. Alloy. Compd., 2012, 517: 157-163.

[4]

Han A, Wu Z, Zou H. One-step Alkali Chloride-assisted Solution Combustion Synthesis of 3YSZ Nanopowders with Ultrahigh Specific Surface Area. Ceram. Int., 2017, 43(18): 16 043-16 047.

[5]

Zhang H, Liu Z, Yang X, et al. Interface Failure Behavior of YSZ Thermal Barrier Coatings during Thermal Shock. J. Alloy. Compd., 2019, 779: 686-697.

[6]

Yang Q, Lin Z, Meng B, et al. Effects of Thickness on the Electrical Conductivity of Sputtered YSZ Film with Nanocrystalline Columnar Microstructure. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2018, 33(6): 1 344-1 349.

[7]

Liu P F, Li Z, Xiao P, et al. Microstructure and Mechanical Properties of in-situ Grown Mullite Toughened 3Y-TZP Zirconia Ceramics Fabricated by Gelcasting. Ceram. Int., 2018, 44(2): 1 394-1 403.

[8]

Deng Z Y, Yang J F, Beppu Y, et al. Effect of Agglomeration on Mechanical Properties of Porous Zirconia Fabricated by Partial Sintering. J. Am. Ceram. Soc., 2002, 85(8): 1 961-1 965.

[9]

Chen L L, Mashimo T, Omurzak E, et al. Pure Tetragonal ZrO2 Nanoparticles Synthesized by Pulsed Plasma in Liquid. J. Phys. Chem. C, 2011, 115(19): 9 370-9 375.

[10]

Li F, Li Y H, Song Z X, et al. Grain Growth Characteristics of Hydrothermally Prepared Yttria Stabilized Zirconia Nanocrystals during Calcination. Rare Metal Mat. Eng., 2017, 46(4): 899-905.

[11]

Zhou Y J, Yuan W H, Huang Q L, et al. Effect of Y2O3 Addition on the Phase Composition and Crystal Growth Behavior of YSZ Nanocrystals Prepared via Coprecipitation Process. Ceram. Int., 2015, 41(9): 10 702-10 709.

[12]

Sanchez-Dominguez M, Liotta L F, Di C G, et al. Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 Nanoparticles by a Novel Oil-in-water Microemulsion Reaction Method and Their Use as Catalyst Support for CO Oxidation. Catal. Today, 2010, 158(1–2): 35-43.

[13]

Hao S J, Wang C, Liu T L, et al. Preparation and Characterization of Yt-tria Stabilized Zirconia Nanoarrays. Ceram. Int., 2016, 42(7): 9 323-9 326.

[14]

Wang S F, Lv H B, Zhou X S, et al. Magnetic Nanocomposites through Polyacrylamide Gel Route. Nanosci. Nanotechnol. Lett., 2014, 6(9): 758-771.

[15]

Yang H, Xian T, Wei Z Q, et al. Size-controlled Synthesis of BiFeO3 Nanoparticles by a Soft-chemistry Route. J. Sol-Gel Sci. Technol., 2011, 58(1): 238-243.

[16]

Hallmann L, Ulmer P, Reusser E, et al. Effect of Dopants and Sintering Temperature on Microstructure and Low Temperature Degradation of Dental Y-TZP-zirconia. J. Eur Ceram. Soc., 2012, 32(16): 4 091-4 104.

[17]

Han J X, Zhang J D, Li F, et al. Low-temperature Sintering and Microstructure Evolution of Bi2O3-doped YSZ. Ceram. Int., 2018, 44(1): 1 026-1 033.

[18]

Yang Q Q, Meng B, Lin Z L, et al. Effect of Sintering Temperature on the Elemental Diffusion and Electrical Conductivity of SrTiO3/YSZ Composite Ceramic. Ionics, 2017, 23(4): 967-975.

[19]

Liang F, Liu J X. Photoluminescence Properties of Hexagonal Indium Tin Oxide Nanopowders Prepared by Solvothermal Method. Rare Met., 2018, 37(1): 47-55.

[20]

Yang F, Zhao X, Xiao P. Thermal Conductivities of YSZ/Al2O3 Composites. J. Eur. Ceram. Soc., 2010, 30(15): 3 111-3 116.

[21]

Inokoshi M, Zhang F, De Munck J, et al. Influence of Sintering Conditions on Low-temperature Degradation of Dental Zirconia. Dent. Mater., 2014, 30(6): 669-678.

[22]

Toraya H, Yoshimura M, Somiya S. Calibration Curve for Quantitative Analysis of the Monoclinic-tetragonal ZrO2 System by X-ray Diffraction. J. Am. Ceram. Soc., 1984, 67(6): C-119-C-121.

[23]

Chevalier J, Cales B, Drouin J M. Low-temperature Aging of Y-TZP Ceramics. J. Am. Ceram. Soc., 1999, 82(8): 2 150-2 154.

[24]

Gremillard L, Chevalier J, Epicier T, et al. Modeling the Aging Kinetics of Zirconia Ceramics. J. Eur. Ceram. Soc., 2004, 24(13): 3 483-3 489.

[25]

Jing Q, Bao J X, Ruan F, et al. High-fracture Toughness and Aging-resistance of 3Y-TZP Ceramics with a Low Al2O3 Content for Dental Applications. Ceram. Int., 2019, 45(5): 6 066-6 073.

[26]

Drozdz E. The Influence of the Method of Addition of Al2O3 to 3YSZ Material on Its Thermal and Electrical Properties. J. Therm. Anal. Calorim., 2014, 118(2): 1 345-1 358.

[27]

Bogicevic A, Wolverton C, Crosbie G M, et al. Defect Ordering in Aliovalently Doped Cubic Zirconia from First Principles. Phys. Rev. B, 2001, 64(1): 014106-1-014106-14.

[28]

Singh R P, Venkataraju C. Effect of Calcinations on the Structural and Magnetic Properties of Magnesium Ferrite Nanoparticles Prepared by Sol Gel Method. Chin. J. Phys., 2018, 56(5): 2 218-2 225.

[29]

Mekprasart W, Worasawat S, Tangcharoen T, et al. Characterization and Effect of Calcination Temperature on Structural Properties of Spinel Zinc Aluminate Synthesized via Co-precipitation Process. Phys. Status Solidi C, 2015, 12(6): 624-627.

[30]

Wang S F, Zhang C F, Sun G A, et al. Chelating Agents Role on Phase Formation and Surface Morphology of Single Orthorhombic YMn2O5 Nanorods via Modified Polyacrylamide Gel Route. Sci. China Chem., 2014, 57(3): 402-408.

[31]

Panthi D, Hedayat N, Du Y. Densification Behavior of Yttria-stabilized Zirconia Powders for Solid Oxide Fuel Cell Electrolytes. J. Adv. Ceram., 2018, 7(4): 325-335.

[32]

Shiono T, Shiono K, Miyamoto K, et al. Synthesis and Characterization of MgAl2O4 Spinel Precursor from a Heterogeneous Alkoxide Solution Containing Fine MgO Powder. J. Am. Ceram. Soc., 2000, 83(1): 235-237.

[33]

Sultana N, Bilkis K, Azad R, et al. Yttria Stabilized Tetragonal Zirconia Ceramics: Preparation, Characterization and Applications. Bangladesh. J. Sci. Ind. Res., 2018, 53(2): 111-116.

[34]

Vasylkiv O, Sakka Y, Skorokhod V V. Low-temperature Processing and Mechanical Properties of Zirconia and Zirconia-alumina Nanoceramics. J. Am. Ceram. Soc., 2003, 86(2): 299-304.

[35]

Hernandez M T, Jurado J R, Duran P, et al. Subeutectoid Degradation of Yttria-stabilized Tetragonal Zirconia Polycrystal and Ceria-doped Yttria-stabilized Tetragonal Zirconia Polycrystal Ceramics. J. Am. Ceram. Soc., 1991, 74(6): 1 254-1 258.

[36]

Ramesh S, Lee K Y S, Tan C Y. A Review on the Hydrothermal Ageing Behaviour of Y-TZP Ceramics. Ceram. Int., 2018, 44(17): 20 620-20 634.

[37]

Sato T, Shimada M. Transformation of Yttria-doped Tetragonal ZrO2 Polycrystals by Annealing in Water. J. Am. Ceram. Soc., 1985, 68(6): 356-359.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/