Ultrafine Grain Tungsten Heavy Alloys with Excellent Performance Prepared by Spark Plasma Sintering

Jingang Zhang , Weimin Wang , Wei Ji , Qianglong He , Aiyang Wang , Lin Tan , Kai Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 393 -398.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 393 -398. DOI: 10.1007/s11595-020-2269-6
Metallic Materials

Ultrafine Grain Tungsten Heavy Alloys with Excellent Performance Prepared by Spark Plasma Sintering

Author information +
History +
PDF

Abstract

Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nanocrystalline powders using spark plasma sintering. The present study mainly discussed the effects of sintering temperature on the density, microstructure and mechanical properties of the alloys. The relative density of 98.12% was obtained at 1 050 °C, and the tungsten grain size is about 871 nm. At 1 000 °C-1 200 °C, the mechanical properties of the alloys tend to first rise and then goes down. After SPS, the alloy exhibits improved hardness (84.3 HRA at 1 050 °C) and bending strength (987.16 MPa at 1 100 °C), due to the ultrafine-grained microstructure. The fracture mode after bending tests is mainly characterized as intergranular or intragranular fracture of W grains, interfacial debonding of W grains-binding phase and ductile tearing of binding phase. The EDS analysis reveals a certain proportion of solid solution between W and Ni-Fe binding phase. The good mechanical properties of the alloys can be attributed to grain refinement and solid solution strengthening.

Keywords

tungsten heavy alloys / ultrafine grain / nano-crystalline powders / solid solution strengthening / spark plasma sintering

Cite this article

Download citation ▾
Jingang Zhang, Weimin Wang, Wei Ji, Qianglong He, Aiyang Wang, Lin Tan, Kai Yang. Ultrafine Grain Tungsten Heavy Alloys with Excellent Performance Prepared by Spark Plasma Sintering. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(2): 393-398 DOI:10.1007/s11595-020-2269-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lassner E, Schubert WD. The Element Tungsten[M], 1999 Tungsten: Springer. 1-59.

[2]

Cai W, Li Y, Dowding R, et al. A Review of Tungsten-based Alloys as Kinetic Energy Penetrator Materials[J]. Reviews in Particulate Materials, 1995, 3: 71-131.

[3]

Bose A, Sadangi R, German RM. A Review on Alloying in Tungsten Heavy Alloys[J]. Supplemental Proceedings: Materials Processing and Interfaces, 2012, 1: 455-465.

[4]

German RM. Liquid Phase Sintering[M]. Springer Science & Business Media, 2013

[5]

Dzykovich I Y, Makarova R, Teodorovich O, et al. Distribution of Elements During the Formation of Sintered Alloys of The System W-Ni-Fe[J]. Powder Metall. Met. Ceram., 1965, 4: 655-660.

[6]

German RM. Sintering Theory and Practice[M]. J. Atmos. Sol.-Terr. Phys., 1996: 568

[7]

German RM. Particulate Composites: Fundamentals and Applications[M]. Springer, 2016

[8]

Zhu Y, Wang Y, Zhang X, et al. W/NiFe Phase Interfacial Characteristics of Liquid-phase Sintered W-Ni-Fe Alloy[J]. Int. J. Refract Met. Hard Mater., 2007, 25: 275-279.

[9]

Hong SH, Ryu HJ. Combination of Mechanical Alloying and Two-Stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy[J]. Mater. Sci. Eng. A., 2003, 344: 253-260.

[10]

Debata M, Acharya T, Sengupta P, et al. Effect of High Energy Ball Milling on Structure and Properties of 95W-3.5Ni-1.5Fe Heavy Alloys[J]. Int. J. Refract. Met. Hard Mater., 2017, 69: 170-179.

[11]

Jing-Lian F, Tao L, Hui-Chao C, et al. Preparation of Fine Grain Tungsten Heavy Alloy with High Properties by Mechanical Alloying and Yttrium Oxide Addition[J]. J. Mater. Process Technol., 2008, 208: 463-469.

[12]

Cordero ZC, Huskins EL, Park M, et al. Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys[J]. Metall. Mater. Trans. A., 2014, 45: 3 609-3 618.

[13]

Srivatsan T, Manigandan K, Petraroli M, et al. Influence of Size of Nanoparticles and Plasma Pressure Compaction on Microstructural Development and Hardness of Bulk Tungsten Samples[J]. Adv. Powder Technol., 2013, 24: 190-199.

[14]

Anderson K, Groza J, Fendorf M, et al. Surface Oxide Debonding in Field Assisted Powder Sintering[J]. Mater. Sci. Eng. A., 1999, 270: 278-282.

[15]

Groza JR, Zavaliangos A. Sintering Activation by External Electrical Field[J]. Mater. Sci. Eng. A., 2000, 287: 171-177.

[16]

Xiang D, Ding L, Li Y, et al. Microstructure and Mechanical Properties of Fine-Grained W-7Ni-3Fe Heavy Alloy by Spark Plasma Sintering[J]. Mater. Sci. Eng. A., 2012, 551: 95-99.

[17]

Li Y, Hu K, Li X, et al. Fine-Grained 93W-5.6Ni-1.4Fe Heavy Alloys with Enhanced Performance Prepared by Spark Plasma Sintering[J]. Mater. Sci. Eng. A., 2013, 573: 245-252.

[18]

Ding L, Xiang D, Li Y, et al. Phase, Microstructure and Properties Evolution of Fine-Grained W-Mo-Ni-Fe Alloy During Spark Plasma Sintering[J]. Mater. Des., 2012, 37: 8-12.

[19]

Shongwe MB, Diouf S, Durowoju MO, et al. A Comparative Study of Spark Plasma Sintering and Hybrid Spark Plasma Sintering of 93W-4.9Ni-2.1Fe Heavy Alloy[J]. Int. J. Refract Met. Hard Mater., 2016, 55: 16-23.

[20]

Räthel J, Herrmann M, Beckert W. Temperature Distribution for Electrically Conductive and Non-conductive Materials during Field Assisted Sintering (FAST)[J]. J. Eur. Ceram Soc., 2009, 29: 1 419-1 425.

[21]

Zavaliangos A, Zhang J, Krammer M, et al. Temperature Evolution During Field Activated Sintering[J]. Mater. Sci. Eng. A., 2004, 379: 218-228.

[22]

Subcommittee A. Standard Test Methods For Determining Average Grain Size[S]. ASTM International, 1996

[23]

Okamoto H. Phase Diagrams for Binary Alloys[M]. ASM International, 2010: 44

[24]

Yingchun W, Shukui L, Fuchi W, et al. Effects of Spark Plasma Sintering Temperature on Microstructure and Dynamic Mechanical Properties of 93W-4.9Ni-2.1Fe Alloy[J]. Rare Metal Mat. Eng., 2010, 10

[25]

Li X, Hu K, Qu S, et al. 93W-5.6Ni-1.4Fe Heavy Alloys with Enhanced Performance Prepared by Cyclic Spark Plasma Sintering[J]. Mater. Sci. Eng. A., 2014, 599: 233-241.

[26]

Ding L, Xiang D, Li Y, et al. Effects of Sintering Temperature on Fine-Grained Tungsten Heavy Alloy Produced by High-Energy Ball Milling Assisted Spark Plasma Sintering[J]. Int. J. Refract. Met. Hard Mater., 2012, 33: 65-69.

[27]

Churn K-S, Yoon D. Pore Formation and Its Effect on Mechanical Properties in W-Ni-Fe Heavy Alloy[J]. Powder Metall., 1979, 22: 175-178.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/