Network Structure and Chemical Durability of Non-alkali Aluminoborosilicate Glasses Containing ZnO

Rui Du , Jianjun Han , Xin Cao , Chao Liu , Jing Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 377 -383.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 377 -383. DOI: 10.1007/s11595-020-2267-8
Advanced Materials

Network Structure and Chemical Durability of Non-alkali Aluminoborosilicate Glasses Containing ZnO

Author information +
History +
PDF

Abstract

The structure and chemical durability of non-alkali aluminoborosilicate glasses with various contents of ZnO were investigated. As the replacement of MgO by ZnO increases from 0 to 3.2mol%, the average number of bridge oxygen per tetrahedron (BO/T) as a measure of network connectivity increases from 2.84 to 3.04, and the chemical durability improved. The weight loss ratio (WLR) of glass etched in 10vol% HF (20 °C, 20 min) solution decreased from 4.809 to 4.509, and in 5wt% NaOH (95 °C, 6 h) solution decreased from 1.201 to 0.994. The replacement of MgO by ZnO further increased to 6.4mol%, the value of BO/T decreased to 3.04 instead, and thus the chemical durability deteriorated. The WLR of HF-acid and NaOH-alkali corrosion increased to 6.683 and 1.994, respectively. The chemical durability shows strongly dependent on the network connectivity and exhibits mixed intermediate effects during the replacement of MgO by ZnO.

Keywords

HF-acid corrosion / NaOH-resistance / network connectivity / Zn/Mg effect

Cite this article

Download citation ▾
Rui Du, Jianjun Han, Xin Cao, Chao Liu, Jing Wang. Network Structure and Chemical Durability of Non-alkali Aluminoborosilicate Glasses Containing ZnO. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(2): 377-383 DOI:10.1007/s11595-020-2267-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ellison A, Cornejo IA. Glass Substrates for Liquid Crystal Displays[J]. Int. J. Appl. Glass Sci., 2010, 1: 87-103.

[2]

Dumbaugh, William H. Substrate Glass for Liquid Crystal Displays[P]. US19870118266-B1

[3]

Adam J, Ellison G. Fining of Boroalumino Silicate Glasses[P]. US20060293162-B2

[4]

Alpha JW, Dumbaugh WH. Thin Silicon Film Electronic Device[P]. US8640498-B2

[5]

Nicolas P, Ronny S, Loïck D, et al. Influence of Glass Composition on the Kinetics of Glass Etching and Frosting in Concentrated HF Solutions[J]. J. Non-Cryst Solids, 2018, 499: 208-16.

[6]

Michelle L, David R, Jonathan F. Network Oxygen Sites in Calcium Aluminoborosilicate Glasses: Results from 17O{27Al} and 17O{11B} Double Resonance NMR[J]. J. Non-Cryst. Solids, 2016, 447: 248-54.

[7]

Tian YL. Preparation Alkali Aluminosilicate Glass Containing Zinc Oxide[P]. CN 107601851-A

[8]

Gui H, Li C, Lin CW, et al. Glass Forming, Crystallization, and Physical Properties of MgO-Al2O3-SiO2-B2O3 Glass-ceramics Modified by ZnO Replacing MgO[J]. J. Ceram. Soc., 2018

[9]

Snyder MJ, Mesko MG, Shelby JE. Volatilization of Boron from E-glass Melts[J]. J. Non-Cryst. Solids, 2006, 352: 669-673.

[10]

Qian DX, Zhou N, Sun DB, et al. Technical Factors Affecting the B2O3 Volatilization in Borosilicate Glass Melting[J]. J. Build. Mater., 1998, 2: 197-200.

[11]

Ellison, Adam JG. Fining of Boroalumino Silicate Glasses[P]. US8640498-B2

[12]

Takahiro K, Shinkichi M. Alkali-free Glass[P]. US9023744-B2

[13]

Zhandos N, Utegulov Margaret A, et al. Structural Characterization of Eu2O3-MgO-Na2O-Al2O3-SiO2 Glasses with Varying Eu2O3 Content: Raman and NMR Studies[J]. J. Non-Cryst. Solids, 2003, 315: 43-53.

[14]

Aguiar H, Serra J, Gonzalez P, et al. Structure Study of Sol-gel Silicate Glasses by IR and Raman Spectroscopies[J]. J. Non-Cryst. Solids, 2009, 355: 475-480.

[15]

Neuville DR. Viscosity, Structure and Mixing in (Ca, Na) Silicate Melts[J]. Chem. Geol., 2006, 229: 28-41.

[16]

Neuville DR, Cormier L, Masssior D. Al Coordination and Speciation in Calcium Aluminosilicate Glasses: Effects of Composition Determined by 27Al MQ-MAS NMR and Raman Spectroscopy[J]. Cheml. Geol., 2006, 229: 173-185.

[17]

Ch Srinivasa R, Ravikumar V, Srikumar T, et al. The Role of Coordination and Valance States of Tungsten Ions on Some Physical Properties of Li2O-Al2O3-ZrO2-SiO2 Glass System[J]. J. Non-Cryst. Solids, 2011, 357: 3 094-3 102.

[18]

McMillan PF, Grzechnik A, Chotalla H. Structural Characterization of SiO2-CsAlO2 and SiO2-RbAlO2 Glasses[J]. J. Non-Cryst. Solids, 1998, 226: 239-248.

[19]

Wang M, Cheng J, Li M, et al. Raman Spectra of Soda-lime-silicate Glass Doped with Rare Earth[J]. Physica B, 2011, 406: 3 865-3 869.

[20]

Avramov I. Viscosity of Glassforming Melts[J]. J. Non-Cryst. Solids, 1998, 238: 6-10.

[21]

James E, Shelby. Introduction to Glass Science and Technology[M]. The Royal Society of Chemistry, 2015 [22] Umessaki N, Takahashi M, et al. Raman Spectroscopic Study of Alkali Silicate Glasses and Melts[J]. J. Non-Cryst. Solids, 1996, 205: 225-230.

[22]

Umesaki N, Takahashi M, Tatsumisago M, et al. Structure of Rapidly Quenched Glasses in the System Li2O-SiO2[J]. J. Mater. Sci., 1993, 28: 3 473-3 481.

[23]

Mysen BO, Finger LW, Virgo D, et al. Curve-fitting of Raman Spectra of Silicate Glasses[J]. Am. Mineral., 1982, 67: 686-695.

[24]

Mysen BO, Virgo D, Seifert FA. Relationships Between Properties and Structure of Aluminosilicate Melts[J]. Am. Mineral., 1985, 70: 88-105.

[25]

Kamitos EI, Kapoutsis JA, Jain H, et al. Vibrational Study of the Role of Trivalent Ions in Sodium Trisilicate Glass[J]. J. Non-Cryst. Solids, 1994, 171: 31-45.

[26]

Frantz J D, Mysen B O. Raman Spectra and Structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 Melts to 1 600 °C[J]. Chem. Geol., 1995, 121: 155-176.

[27]

Li H, Charpentier T, Du J, et al. Composite Reinforcement: Recent Development of Continuous Glass Fibers[J]. Int. J. Appl. Glass Sci., 2017, 8: 23-26.

[28]

Florian P, Veron E, Green TFG, et al. Elucidation of the Al/Si Ordering in Gehlenite Ca2Al2SiO7 by Combined 29Si and 27Al NMR Spectroscopy/Quantum Chemical Calculations[J]. Chem. Mater., 2012, 24: 4 068-4 079.

[29]

Neuville D R. Viscosity, Structure and Mixing in (Ca, Na) Silicate Melts[J]. Chem. Geol., 2006, 229: 28-41.

[30]

Umesaki N, Takahashi M, Tatsumisago M, et al. Raman Spectroscopic Study of Alkali Silicate Glasses and Melts[J]. J. Non-Cryst. Solids, 1996, 205–207: 225-230.

[31]

You JL, Jiang GC, Xu KD. High Temperature Raman Spectra of Sodium Disilicate Crystal, Glass and Its Liquid Spectral Anal[J]. J. Non-Cryst. Solids, 2001, 282: 125-131.

[32]

Shan ZT, Qiao A, Liu SJ, et al. Mixed Intermediate Effect on Mechanical and Rheological Performances in ZnMg Silicate Glasses[J]. J. Alloys Compd., 2018, 747: 738-746.

[33]

Dietzel AH. On the So-called Mixed Alkali Effect[J]. Phys. Chem. Glasses, 1983, 24: 172-180.

[34]

Day D E. Mixed Alkali Glasses-Their Properties and Uses[J]. J. Non-Cryst. Solids, 1976, 21: 343-372.

[35]

Bunde A, Ingram MD, Mass P. The Dynamic Strucyure Model for Ion Transport in Glasses[J]. J. Non-Cryst. Solids, 1994, 172–174: 1 222-1 236.

[36]

Ingram MD. Towards a Theory of Ion Transport in Glass[J]. Physica A, 1999, 266: 390-399.

[37]

Balasubramanian S, Rao KJ. A Molecular Dynamics Study of the Mixed Alkali Effect in Silicate Glasses[J]. J. Non-Crtst. Solids, 1995, 181: 157-174.

[38]

Bunde A, Ingram MD, Maass P, et al. Mixed Alkali Effects in Ionic Conductors: A New Model and Computer Simulations[J]. J. Non-Cryst. Solids, 1991, 131–133: 1 109-1 112.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/