Synthesis and Characterization of Magnetic MAX Phase (Cr2−xMn x)GaC

Ming Yan , Chao Li , Yunqi Zou , Mengliu Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 363 -367.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 363 -367. DOI: 10.1007/s11595-020-2265-x
Advanced Materials

Synthesis and Characterization of Magnetic MAX Phase (Cr2−xMn x)GaC

Author information +
History +
PDF

Abstract

The solid solution of (Cr2−xMn x)GaC with magnetic properties was synthesized by pressureless sintering. The composition, morphology, and magnetic properties of products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The experimental results indicate that the solid solubility of Mn is related to the value of x, which reaches the maximum at x=0.4 and the characteristic peaks shift effect is most obvious. After the solution treatments, the samples of (Cr2−xMn x)GaC still presents the layered structure of MAX phase, and the lattice parameter has decreased slightly. By characterizing the magnetic properties of (Cr2−xMn x)GaC, the successful doping of Mn atoms was confirmed, and the intensity of magnetism was positively correlated with the doping amounts of Mn.

Keywords

MAX phase / Cr2GaC / sintering / solid solution / magnetic

Cite this article

Download citation ▾
Ming Yan, Chao Li, Yunqi Zou, Mengliu Yang. Synthesis and Characterization of Magnetic MAX Phase (Cr2−xMn x)GaC. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(2): 363-367 DOI:10.1007/s11595-020-2265-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blasse G. New Compounds with Eulytine Structure: Crystal Chemistry and Luminescence. Journal of Solid State Chemistry, 1970, 2(1): 27-30.

[2]

Barsoum MW, El-Raghy T. The MAX Phases: Unique New Carbide and Nitride Materials. American Scientist, 2001, 89(4): 334-343.

[3]

Barsoum MW. The MN+1AXN Phases: A New Class of Solids. Progress in Solid State Chemistry, 2000, 28(1): 201-281.

[4]

Mo Y, Rulis P, Ching W Y. Electronic Structure and Optical Conductivities of 20 MAX-phase Compounds. Physical Review B, 2012, 86(16): 165 122

[5]

Shein IR, Ivanovskii AL. Structural, Elastic, Electronic Properties and Fermi Surface for Superconducting Mo2GaC in Comparison with V2GaC and Nb2GaC from First Principles. Physica C: Superconductivity, 2010, 470(13–14): 533-537.

[6]

Jeitschko W, Nowotny H, Benesovsky F. Kohlenstoff-haltige Ternäre Phasen (Nb3Al2C and Ta3Al2C). Monatshefte Für Chemie Und verwandte Teile anderer Wissenschaften, 1963, 94(1): 332-333.

[7]

Nowotny VH. Strukturchemie Einiger Verbindungen Der Übergangsmetalle Mit Den Elementen C, Si, Ge, Sn. Progress in Solid State Chemistry, 1971, 5(71): 27-70.

[8]

Eklund P, Beckers M, Jansson U, et al. The Mn+1AXn Phases: Materials Science and Thin-Film Processing. Thin Solid Films, 2010, 518(8): 1851-1878.

[9]

Mockute A, Dahlqvist M, Hultman L, et al. Synthesis and ab Initio Calculations of Nanolaminated (Cr,Mn)2AlC Compounds. Physical Review B, 2013, 87(9): 094 113

[10]

Ingason AS, Mockute A, Dahlqvist M, et al. Magnetic Self-Organized Atomic Laminate from First Principles and Thin Film Synthesis. Physical Review Letters, 2013, 110(19): 195 502

[11]

Lin S, Tong P, Wang BS, et al. Magnetic and Electrical/Thermal Transport Properties of Mn-doped Mnn+1AXn Phase Compounds Cr2−xMnx−GaC (0⩽x⩽1). Journal of Applied Physicals, 2013, 113(5): 053 502

[12]

Mockute A, Dahlqvist M, Hultman L, et al. Synthesis and ab Initio Calculations of Nanolaminated (Cr,Mn)2AlC Compounds. Physical Review B, 2013, 87(9): 094 113

[13]

Mockute A, Persson P O Å, Magnus F, et al. Synthesis and Characterization of Arc Deposited Magnetic (Cr,Mn)2AlC MAX Phase Films. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(5): 420-423.

[14]

Gercsi Z, Sandeman KG. Structurally Driven Metamagnetism in MnP and Related Pnma Compounds. Physical Review B, 2010, 81(22): 224 426

[15]

Ingason AS, Petruhins A, Dahlqvist M, et al. A Nanolaminated Magnetic Phase: Mn2GaC. Materials Research Letters, 2014, 2(2): 89-93.

[16]

Baibich MN, Broto JM, Fert A, et al. Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 1988, 61(21): 2 472-2 475.

[17]

Dahlqvist M, Alling B, Rosen J. Stability Trends of MAX Phases from First Principles. Physical Review B, 2010, 81(22): 220 102

[18]

Dahlqvist M, Alling B, Abrikosov I, et al. Phase Stability of Ti2AlC Upon Oxygen Incorporation: A First-principles Investigation. Physical Review B, 2010, 81(2): 024 111

[19]

Liu Z, Waki T, Tabata Y, et al. Magnetic Ground State of the Mn+1AXn Phase Nitride Cr2GaN. Physical.Review.B, 2013, 88(13): 608-617.

[20]

Yan M, Yang L, Li C, et al. Preparation of Two-dimensional Ti2CTx by Molten Fluorinated Salt Method. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 299-302.

[21]

Jaouen M, Chartier P, Cabioch T, et al. Invar Like Behavior of the Cr2AlC MAX Phase at Low Temperature. Journal of the American Ceramic Society, 2013, 96(12): 3 872-3 876.

[22]

Dahlqvist M, Alling B, Abrikosov I A, et al. Magnetic Nanoscale Laminates with Tunable Exchange Coupling from First Principles. Physical Review B, 2011, 84(22): 220 403

[23]

Yu W, Chen D, Tian L, et al. Self-lubricate and Anisotropic Wear Behavior of AZ91D Magnesium Alloy Reinforced with Ternary Ti2AlC MAX Phases. Journal of Materials Science & Technology, 2019, 35(3): 275-284.

[24]

Sharma G, Naguib M, Feng D, et al. Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. The Journal of Physical Chemistry C, 2016, 120(49): 28 131-28 137.

[25]

Song GM, Li SB, Zhao C X, et al. Ultra-high Temperature Ablation Behavior of Ti2AlC Ceramics under an Oxyacetylene Flame. Journal of the European Ceramic Society, 2011, 31(5): 855-862.

[26]

Chappert C, Fert A, Van Dau FN. The Emergence of Spin Electronics in Data Storage. Nature Materials, 2007, 6(11): 813-823.

[27]

Thompson DA, Best JS. The Future of Magnetic Data Storage Techology. IBM Journal of Research and Development, 2000, 44(3): 311-322.

[28]

Schabes ME. Micromagnetic Theory of Non-uniform Magnetization Processes in Magnetic Recording Particles. Journal of Magnetism and Magnetic Materials, 1991, 95(3): 249-288.

[29]

Felser C, Fecher GH, Balke B. Spintronics: A Challenge for Materials Science and Solid-State Chemistry. Angewandte Chemie International Edition, 2007, 46(5): 668-699.

[30]

Yazyev OV, Katsnelson MI. Magnetic Correlations at Graphene Edges: Basis for Novel Spintronics Devices. Physical Review Letters, 2008, 100(4): 047 209

[31]

Etzkorn J, Ade M, Kotzott D, et al. Ti2GaC, Ti4GaC3 and Cr2GaC-Synthesis, Crystal Growth and Structure Analysis of Ga-containing MAX-phases Mn +1GaCn with M=Ti, Cr and n=1, 3. Journal of Solid State Chemistry, 2009, 182(5): 995-1 002.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/