Effects of Elemental Chemical State in NiFe2O4@TiO2 on the Photocatalytic Performance

Rui Rao , Xian Zhang , Xiao Sun , Min Wang , Yongqing Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 320 -326.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 320 -326. DOI: 10.1007/s11595-020-2259-8
Advanced Materials

Effects of Elemental Chemical State in NiFe2O4@TiO2 on the Photocatalytic Performance

Author information +
History +
PDF

Abstract

The elemental chemical state of NiFe2O4@TiO2 was changed by the reduction in order to investigate its effects on the photocatalytic performance. The synthesized NiFe2O4@TiO2 samples were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), magnetic and photocatalytic measurements. Unexpectedly, the reduction reaction does not produce oxygen vacancies O v and TiO x in the TiO2 lattice. The optimal catalyst was obtained at the reducing temperature of 800 °C, and its degradation efficiency D e to the methylene blue and reaction rate constant K app are the highest, reaching 99.9% and 3×10−2 min−1, respectively. The reason could not be explained by both the visible light absorption and the appropriate amount of O v and TiO x. Instead, the lowest ratios of TiOH and Ti-O-Fe(Ni) may be responsible for the optimum photocatalytic performance.

Keywords

photocatalyst / TiO2 / self-doping / NiFe2O4 / photocatalytic performance

Cite this article

Download citation ▾
Rui Rao, Xian Zhang, Xiao Sun, Min Wang, Yongqing Ma. Effects of Elemental Chemical State in NiFe2O4@TiO2 on the Photocatalytic Performance. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(2): 320-326 DOI:10.1007/s11595-020-2259-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koli VB, Mavengere S, Kim JS. Boron-doped TiO2-CNTs Nanocomposites for Photocatalytic Application[J]. J. Mater. Sci.-Mater. El., 2018, 29(19): 16 660-16 672.

[2]

Guo HY, Jiang S, Wang CY, et al. Carbonaceous Nanofibers-titanium Dioxide Nanocomposites: Synthesis and Use as a Platform for Removal of Dye Pollutants[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 303-307.

[3]

Wang BB, Deng YQ, He P, et al. Powder Quartz/Nano-TiO2 Composite: Mechanochemical Preparation and Photocatalytic Degradation of Formaldehyde[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 381-1 386.

[4]

Zhang H, Lv YQ, Guo Y, et al. Fully-air Processed Al-doped TiO2 Nanorods Perovskite Solar Cell Using Commercial Available Carbon Instead of Hole Transport Materials and Noble Metal Electrode[J]. J. Mater. Sci.-Mater. El., 2018, 29(5): 3 759-3 766.

[5]

Guo YR, Zou TT, Cheng Q, et al. Towards Improvement of Photovoltaic Performance of Aqueous Dye-sensitized Solar Cells by Tungsten-doped Mesoporous Nanobeads TiO2 Working Electrode[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 17-22.

[6]

Song HJ, Chen W, Wang X, et al. Detection of Methanol by a Sensor Based on Rare-earth Doped TiO2 Nanoparticles[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(5): 1 070-1 075.

[7]

Carp O, Huisman CL, Reller A. Photoinduced Reactivity of Titanium Dioxide[J]. Prog. Solid State Ch., 2004, 32(1–2): 33-177.

[8]

Sun XY, Liu C, Chen Z, et al. The Photocatalytic Performance of Ta and Rh Co-doped TiO2 Tuned by the Average Dopant Valence[J]. Mater. Res. Bull., 2018, 100: 153-160.

[9]

Chen Z, Zhao YS, Ma JQ, et al. Detailed XPS Analysis and Anomalous Variation of Chemical State for Mn- and V-doped TiO2 Coated on Magnetic Particles[J]. Ceram. Int., 2017, 43(18): 16 763-16 772.

[10]

Cavalcante RP, Dantas RF, Bayarric B, et al. Photocatalytic Mechanism of Metoprolol Oxidation by Photocatalysts TiO2 and TiO2 Doped with 5% B: Primary Active Species and Intermediates[J]. Appl. Catal. B-Environ., 2016, 194: 111-122.

[11]

Zou H, Song MX, Yi FC, et al. Simulated-sunlight-activated Photocatalysis of Methyl Orange Using Carbon and Lanthanum Co-doped Bi2O3-TiO2 Composite[J]. J. Alloy. Compd., 2016, 680: 54-59.

[12]

Pei ZX, Weng SX, Liu P. Enhanced Photocatalytic Activity by Bulk Trapping and Spatial Separation of Charge Carriers: A Case Study of Defect and Facet Mediated TiO2[J]. Appl. Catal. B- Environ., 2016, 180: 463-470.

[13]

Justicia I, Ordejon P, Canto G, et al. Designed Self — doped Titanium Oxide Thin Films for Efficient Visible — Light Photocatalysis[J]. Adv. Mater., 2002, 14(19): 1 399-1 402.

[14]

Zuo F, Wang L, Wu T, et al. Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light[J]. J. Am. Chem. Soc., 2010, 132(34): 11 856-11 857.

[15]

Liu M, Qiu XQ, Miyauchi M, et al. Cu(II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst[J]. Chem. Mater., 2011, 23(23): 5 282-5 286.

[16]

Lin SH, Zhang XW, Sun GJ, et al. Fabrication of Solar Light Induced Fe-TiO2 Immobilized on Glass-fiber and Application for Phenol Photocatalytic Degradation[J]. Mater. Res. Bull., 2013, 48(11): 4 570-4 575.

[17]

Luo Y, Li M, Hu GH, et al. Enhanced Photocatalytic Activity of Sulfur-doped Graphene Quantum Dots Decorated with TiO2 Nanocomposites[J]. Mater. Res. Bull., 2018, 97: 428-435.

[18]

Dhanasekar M, Jenefer V, Nambiarc RB, et al. Ambient Light Antimicrobial Activity of Reduced Graphene Oxide Supported Metal Doped TiO2 Nanoparticles and Their PVA Based Polymer Nanocomposite Films[J]. Mater. Res. Bull., 2018, 97: 238-243.

[19]

Tang YF, Fu S, Zhao K, et al. Fabrication of TiO2 Micro-/Nano-spheres Embedded in Nanofibers by Coaxial Electrospinning[J]. Mater. Res. Bull., 2016, 78: 11-15.

[20]

Xu JW, Gao ZD, Han K, et al. Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria[J]. ACS Appl. Mater. Inter., 2014, 6(17): 15 122-15 131.

[21]

Li HS, Zhang YP, Wang SY, et al. Study on Nanomagnets Supported TiO2 Photocatalysts Prepared by a Sol-gel Process in Reverse Microemulsion Combining with Solvent-thermal Technique[J]. J. Hazard. Mater., 2009, 169(1–3): 1 045-1 053.

[22]

Ji HY, Jing XC, Xu YG, et al. Magnetic g-C3N4/NiFe2O4 Hybrids with Enhanced Photocatalytic Activity[J]. RSC Adv., 2015, 5(71): 57 960-57 967.

[23]

Liu C, Zhu X, Wang P, et al. Defects and Interface States Related Photocatalytic Properties in Reduced and Subsequently Nitridized Fe3O4/TiO2[J]. J. Mater. Sci. Techn., 2018, 34(6): 931-941.

[24]

Xu ST, Ma YQ, Zheng GH, et al. Simultaneous Effects of Surface Spins: Rarely Large Coercivity, High Remanence Magnetization and Jumps in The Hysteresis Loops Observed in CoFe2O4 Nanoparticles[J]. Nanoscale., 2015, 7(15): 6 520-6 526.

[25]

Laipan MW, Zhu RL, Zhu JX, et al. Visible Light Assisted Fenton-like Degradation of Orange II on Ni3Fe/Fe3O4 Magnetic Catalyst Prepared from Spent FeNi Layered Double Hydroxide[J]. J. Mol. Catal. A-Chem., 2016, 415: 9-16.

[26]

Jiang H, Xia QF. Single- and Bi-layer Memristive Devices with Tunable Properties Using TiOx Switching Layers Deposited by Reactive Sputtering[J]. Appl. Phys. Lett., 2014, 104(15): 153 505

[27]

Wang GM, Wang HY, Ling YC, et al. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting[J]. Nano. Lett., 2011, 11(7): 3 026-3 033.

[28]

Sun MX, Wang Y, Fang YL, et al. Construction of MoS2/CdS/TiO2 Ternary Composites with Enhanced Photocatalytic Activity and Stability[J]. J. Alloy. Compd., 2016, 684: 335-341.

[29]

Zhou M, Zhang JJ, Ji RD, et al. Dielectric Abnormities in Complex Perovskite BaTi1−x(Co0.5Nb0.5)(x)O3 Ceramics[J]. Mater. Lett., 2013, 106: 366-368.

[30]

Yamashita T, Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials[J]. Appl. Surf. Sci., 2008, 254(8): 2 441-2 449.

[31]

Chenakin S, Kruse N. Combining XPS and ToF-SIMS for Assessing the CO Oxidation Activity of Au/TiO2 Catalysts[J]. J. Catal., 2018, 358: 224-236.

[32]

Soltani RDC, Safari M, Mashayekhi M. Sonocatalyzed Decolorization of Synthetic Textile Wastewater Using Sonochemically Synthesized MgO Nanostructures[J]. Ultrason. Sonochem., 2016, 30: 123-131.

[33]

Chen FJ, Cao YL, Jia DZ. A facile Route for the Synthesis of ZnS Rods with Excellent Photocatalytic Activity[J]. Chem. Eng. J., 2013, 221: 222-229.

[34]

Zhao HY, Wang YJ, Wang YB, et al. Electro-Fenton Oxidation of Pesticides with a Novel Fe3O4@Fe2O3/Activated Carbon Aerogel Cathode: High activity, wide pH Range and Catalytic Mechanism[J]. Appl. Catal. B-Environ., 2012, 125: 120-127.

[35]

Roy N, Sohn Y, Leung KT, et al. Engineered Electronic States of Transition Metal Doped TiO2 Nanocrystals for Low Overpotential Oxygen Evolution Reaction[J]. J. Phys. Chem. C, 2014, 118(51): 29 499-29 506.

[36]

Geng BQ, Ding ZL, Ma YQ. Unraveling the Correlation between the Remanence Ratio and the Dipolar Field in Magnetic Nanoparticles by Tuning Concentration, Moment, and Anisotropy[J]. Nano Res., 2016, 9(9): 2 772-2 781.

[37]

Zhang ST, Ruan YR, Liu C, et al. The Evolution of Structure, Chemical State and Photocatalytic Performance of Alpha-Fe/FeTiO3/TiO2 with the Nitridation at Different Temperatures[J]. Mater. Res. Bul., 2017, 95: 503-508.

[38]

Moses PG, Janotti A, Franchini C, et al. Donor Defects and Small Polarons on the TiO2(110) Surface[J]. J. Appl. Phys., 2016, 119(18)

[39]

Sun X, Zhu X, Ruan YR, et al. NiFe2 and Its Nitride γ-NiFe2N Derived from NiFe2O4: Magnetostriction, Thermal Expansion, Resistivity and Corrosion Resistance. Mater[J]. Res. Bul., 2017, 89: 245-252.

[40]

Sun X, Zhang X, Wang P, et al. Evolution of Structure and Magnetism from NixFe3−xO4 (x=0, 0.5, 1 and 1.5) to Ni-Fe Alloys and to Ni-Fe-N[J]. Mater. Res. Bul., 2017, 95: 261-266.

[41]

Sun QC, Sims H, Mazumdar D, et al. Optical Band Gap Hierarchy in a Magnetic Oxide: Electronic Structure of NiFe2O4[J]. Phys. Rev. B, 2012, 86(20): 201506(5)

[42]

Wang J, Tafen DN, Lewis JP, et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts[J]. J. Am. Chem. Soc., 2009, 131(34): 12 290-12 297.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/