ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation

Shiqian Li , Pen-Chi Chiang , Ling Ding , Kinjal J. Shah , Qinghua Chen , Sheng Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 310 -319.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (2) : 310 -319. DOI: 10.1007/s11595-020-2258-9
Advanced Materials

ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation

Author information +
History +
PDF

Abstract

Chitosan (CS), hydrated zinc acetate, and rectorite (REC) were used as raw materials to prepare CS-embedded zinc oxide (ZnO) nanoparticle by a chemical precipitation process. Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst, its morphology and structure were analyzed by means of FTIR, XRD, TGA, SEM, and TEM. The effects of the catalyst dosage, methyl orange (MO) initial concentration and solution pH on photocatalytic performance were also discussed. The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity. Under irradiation of visible light, 0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6, then the MO solution (10 mg/L) was decolored by more than 99%, indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity. Therefore, the photodegradation kinetic mechanism of MO in aqueous solution is presumed.

Keywords

ZnO-Chitosan/rectorite / nanocomposite / visible-light / methyl orange / photodegradation

Cite this article

Download citation ▾
Shiqian Li, Pen-Chi Chiang, Ling Ding, Kinjal J. Shah, Qinghua Chen, Sheng Chen. ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(2): 310-319 DOI:10.1007/s11595-020-2258-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu J, Zhang YP, Gutha YV, et al. Antibacterial Property and Biocompatibility of Chitosan/Poly(vinylalcohol)/ZnO (CS/PVA/ZnO) Beads as an Efficient Adsorbent for Cu(II) Removal from Aqueous Solution[J]. Coll. Surf. B Biointerf., 2017, 156: 340-348.

[2]

Habiba U, Islam MDS, Siddique TA. Adsorption and Photocatalytic Degradation of Anionic Dyes on Chitosan/PVA/Na-Titanate/TiO2 Composites Synthesized by Solution Casting Method[J]. Carbohydr. Polym., 2016, 149: 317-331.

[3]

Kalaivani JG, Suja SK. TiO2 (Rutile) Embedded Inulin-Aversatile Bio-Nanocomposite for Photocatalytic Degradation of Methylene Blue[J]. Carbohydr. Polym., 2016, 143: 51-60.

[4]

Geng X, Lu PF, Zhang C, et al. Room-Temperature NO2 Gas Sensors Based on rGO@ZnO1-x Composites: Experiments and Molecular Dynamics Simulation[J]. Sensors & Actuators: B. Chem., 2019, 282: 690-702.

[5]

Feng X, Guo H, Patel K, et al. High Performance, Recoverable Fe3O4@ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol[J]. Chem. Eng. J., 2014, 244: 327-334.

[6]

Abdelwahab NA, Ghoneim AM. Photocatalytic Activity of ZnO Coated Magnetic Crosslinked Chitosan/Polyvinyl Alcohol Microspheres[J]. Mater. Sci. Eng. B, 2018, 228: 7-17.

[7]

Zeng X, Yang ZH, Meng JL, et al. The Cube-Like Porous ZnO/C Composites Derived From Metal Organic Framework-5 as Anodic Material with High Electrochemical Performance for Ni-Zn Rechargeable Battery[J]. J. Power. Sour., 2019, 438: 226 986.

[8]

Midya LP, Patra AS, Banerjee C, et al. Novel Nanocomposite Derived from ZnO/CdS QDs Embedded Crosslinked Chitosan: An Efficient Photocatalyst and Effective Antibacterial Agent[J]. J. Hazard. Mater., 2019, 369: 398-407.

[9]

Zheng XJ, Li XX, Li JY, et al. Efficient Removal of Anionic Dye (Congo Red) by Dialdehyde Microfibrillated Cellulose/Chitosan Composite Film with Significantly Improved Stability in Dye Solution[J]. Int. J. Bio. Macromol., 2018, 107: 283-289.

[10]

Wu Q, Gao M, Cao S, et al. Chitosan-Based Layered Carbon Materials Prepared via Ionic-Liquid-Assisted Hydrothermal Carbonization and Their Performance Study[J]. J. Taiwan Inst. Chem. Engin., 2019, 101: 231-243.

[11]

Borgohain R, Boruah PK, Baruah S. Heavy-Metal Ion Sensor Using Chitosan Capped ZnS Quantum Dots[J]. Sen. Act. B: Chem., 2016, 226: 534-539.

[12]

Ma HH, Kong AQ, Ji YH, et al. Ultrahigh Adsorption Capacities For Anionic and Cationic Dyes from Wastewater Using Only Chitosan[J]. J. Clean. Product., 2019, 214: 89-94.

[13]

Zhu LF, Li JS, Mai J, et al. Ultrasound-Assisted Synthesis of Chitosan from Fungal Precursors for Biomedical Applications[J]. Chem. Eng. J., 2019, 357: 498-507.

[14]

Inar SC, Kaynar H, Aydemir TL, et al. An Efficient Removal of RB5 from Aqueous Solution by Adsorption onto Nano-ZnO/Chitosan Composite Beads[J]. Int. J. Biol. Macromol., 2017, 96: 459-465.

[15]

Pathaniaa D, Guptaa D, Al-Muhtaseb AH, et al. Photocatalytic Degradation of Highly Toxic Dyes Using Chitosan-g-Poly (Acrylamide)/ZnS in Presence of Solar Irradiation[J]. J. Photochem. Photobiol. A: Chem., 2016, 329: 61-68.

[16]

Zhu HY, Xiao L, Jiang R, et al. Efficient Decolorization of Azo Dye Solution by Visible Light-Induced Photocatalytic Process Using SnO2/ZnO Heterojunction Immobilized In Chitosan Matrix[J]. Chem. Eng. J., 2011, 172: 746-753.

[17]

Saravanan R, Aviles J, Gracia F. Crystallinity and Lowering Band Gap Induced Visible Light Photocatalytic Activity of TiO2/CS (Chitosan) Nanocomposites[J]. Int. J. Biol. Macromol., 2018, 109: 1 239-1 245.

[18]

Cao QH, Xiao L, Li J, et al. Morphology-Controlled Fabrication of Ag3PO4/Chitosan Nanocomposites with Enhanced Visible-Light Photocatalytic Performance Using Different Molecular Weight Chitosan[J]. Powder Technol., 2016, 292: 186-194.

[19]

Bhanvase BA, Veer A, Shirsath SR, et al. Ultrasound Assisted Preparation, Characterization and Adsorption Study of Ternary Chitosan-ZnO-TiO2 Nanocomposite: Advantage Over Conventional Method[J]. Ultrason Sonochem., 2019, 52: 120-130.

[20]

Dinh VP, Le NC, Tuyen LA. Insight into Adsorption Mechanism of lead (II) from Aqueous Solution by Chitosan Loaded MnO2 Nanoparticles. Mater. Chem. Phys., 2018, 207: 294-302.

[21]

Hassanein A, Salahuddin N, Matsud A. Fabrication of Biosensor Based on Chitosan-ZnO/Polypyrrole Nanocomposite Modified Carbon Paste Electrode for Electroanalytical Application[J]. Mater. Sci. Eng. C, 2017, 80: 494-501.

[22]

Samadi S, Khalilian F, Tabatabaee A. Synthesis, Characterization and Application of Cu-TiO2/Chitosan Nanocomposite Thin Film for the Removal of Some Heavy Metals from Aquatic Media[J]. J. Nanostruct. Chem., 2014, 4: 84-92.

[23]

Li SQ, Zhou PJ, Zhang WS, et al. Effective Photocatalytic Decolorization of Methylene Blue Utilizing ZnO/rectorite Nanocomposite Under Simulated Solar Irradiation[J]. J. Alloy. Comp., 2014: 616 227–616 234

[24]

Lu YJ, Chang PR, Zheng PW, et al. Rectorite-TiO2-Fe3O4 Composites: Assembly, Characterization, Adsorption And Photodegradation[J]. Chem. Eng. J., 2014, 255: 49-54.

[25]

Li X, Tu H, Huang MT, et al. Incorporation of Lysozyme-Rectorite Composites into Chitosan Films for Antibacterial Properties Enhancement[J]. Int. J. Biol. Macromol., 2017, 102: 789-795.

[26]

Wang JT, Fan JM, Li J, et al. Ultrasound Assisted Synthesis of Bi2Nb O5F/Rectorite Composite and Its Photocatalytic Mechanism Insights[J]. Ultrason Sonochem., 2018, 48: 404-411.

[27]

Revathi T, Thambidurai S. Immobilization of ZnO on Chitosan-Neem Seed Composite for Enhanced Thermal and Antibacterial Activity[J]. Adv. Powder Technol., 2018, 29: 1 445-1 454.

[28]

Khuzwayo Z, Chirwa EMN. Modelling and Simulation of Photocatalytic Oxidation Mechanism of Chlorohalogenated Substituted Phenols in Batch Systems: Langmuir-Hinshelwood Approach[J]. J. Hazard. Mater., 2015, 300: 459-466.

[29]

Hu MC, Yao ZH, Liu XG. Enhancement Mechanism of Hydroxyapatite for Photocatalytic Degradation of Gaseous Formaldehyde over TiO2/Hydroxyapatite[J]. J. Taiwan Instit. Chem. Engin., 2018, 85: 91-97.

[30]

Zhai M, Xu Y, Zhou B, et al. Keratin-Chitosan/n-ZnO Nanocomposite Hydrogel for Antimicrobial Treatment of Burn Wound Healing: Characterization and Biomedical Application[J]. J. Photochem. Photobio. B: Bio., 2018, 180: 253-258.

[31]

Hassanein A, Salahuddin N, Matsuda A, et al. Fabrication of Biosensor Based on Chitosan-ZnO/Polypyrrole Nanocomposite Modified Carbon Paste Electrode for Electroanalytical Application[J]. Mater. Sci. Eng. C, 2017, 80: 494-501.

[32]

Yan EY, Wang C, Wang SH, et al. Synthesis and Characterization of Fluorescent Chitosan-ZnO Hybrid Nanospheres[J]. Mater. Sci. Eng. B, 2011, 176: 458-461.

[33]

Pandiselvi K, Thambidurai S. Synthesis, Characterization, and Antimicrobial Activity of Chitosan-Zinc Oxide/Polyaniline Composites[J]. Mater. Sci. Semicond. Process., 2015, 31: 573-581.

[34]

Chen JJ, Cheng G, Liu R, et al. Enhanced Physical and Biological Properties of Silk Fibroin Nanofibers by Layer-by-Layer Deposition of Chitosan and Rectorite[J]. J. Colloid Interf. Sci., 2018, 523: 208-216.

[35]

Naamani LLA, Dobretsov S, Dutta JD, et al. Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling[J]. Chemosphere, 2017, 168: 408-417.

[36]

Zheng H, Du Y, Yu J, et al. Preparation and Characterization of Chitosan/Poly (Vinyl Alcohol) Blend Fibers[J]. J. Appl. Polym. Sci., 2010, 80: 2 558-2 565.

[37]

Chougule MA, Sen S, Patil VB. Fabrication of Nanostructured ZnO Thin Film Sensor for NO2 Monitoring[J]. Ceram Int., 2012, 38: 2 685-2 692.

[38]

Ashkarrana AA, Zad AI, Mahdavi SM, et al. ZnO Nanoparticles Prepared by Electrical Arc Discharge Method in Water[J]. Mater. Chem. Phys., 2009, 118: 6-8.

[39]

Revathi T, Thambidurai S. Synthesis of Chitosan Incorporated Neem Seed Extract (Azadirachta indica) for Medical Textiles[J]. Int. J. Biol. Macromol., 2017, 104: 1 890-1 896.

[40]

Li LH, Deng JC, Deng HR, et al. Synthesis and Characterization of Chitosan/ZnO Nanoparticle Composite Membranes[J]. Carbohydr. Res., 2010, 345: 994-998.

[41]

Bhowmick AD, Banerjee SL, Pramanik N, et al. Organically Modified clay Supported Chitosan/Hydroxyapatite-Zinc Oxide Nanocomposites with Enhanced Mechanical and Biological Properties for the Application in Bone Tissue Engineering[J]. Int. J. Biol. Macromol., 2018, 106: 11-19.

[42]

Dehaghi SM, Rahmanifar B, Moradi AM. Removal of Permethrin Pesticide from Water by Chitosan-Zinc Oxide Nanoparticles Composite as an Adsorbent[J]. J. Saudi. Chem. Soci, 2014, 18: 348-355.

[43]

Mariana VC, José OSL, Sonia A. Photocatalytic Inactivation of Airborne Microorganisms in Continuous Flow Using Perlite-Supported ZnO and TiO2[J]. Chem. Eng. J., 2019, 374: 914-923.

[44]

Zhang WP, Xiao XY, Zheng LL, et al. Fabrication of TiO2/MoS2@Ze-olite Photocatalyst and Its Photocatalytic Activity for Degradation of Methyl Orange under Visible Light[J]. Appl. Surf. Sci., 2015, 358: 468-478.

[45]

Midya LP, Patra AS, Banerjee C, et al. Novel Nanocomposite Derived from ZnO/CdS QDs Embedded Crosslinked Chitosan: An Efficient Photocatalyst and Effective Antibacterial Agent[J]. J. Hazard. Mater., 2019, 369: 398-407.

[46]

Shao ZF, Wang Y, Zhang YF, et al. Electrochemical Deposition Synthesis of ZnO-NA/Cu2O-NPs Type-II Hierarchical Heterojunction for Enhanced Photoelectrochemical Degradation of Methyl Orange (MO) [J]. J. Photochem. Photobiol. A: Chem., 2018, 364: 657-670.

[47]

Abdelwahab NA, Ghoneim AM. Photocatalytic activity of ZnO Coated Magnetic Crosslinked Chitosan/Polyvinyl Alcohol Microspheres[J]. Mater. Sci. Eng. B, 2018, 228: 7-17.

[48]

Farzana MH, Meenakshi SK. Visible Light-Driven Photoactivity of Zinc Oxide Impregnated Chitosan Beads for the Detoxification of Textile Dyes[J]. Appl. Catal. A: General., 2015, 503: 124-134.

[49]

Abdulhameed AS, Mohammad AKT, Jawad AH, et al. Application of Response Surface Methodology for Enhanced Synthesis of Chitosan Tripolyphosphate/TiO2 Nanocomposite and Adsorption of Reactive Orange 16 Dye[J]. J. Clean. Product., 2019, 232: 43-56.

[50]

Wang L, Li Z, Chen J, et al. Enhanced Photocatalytic Degradation of Methyl Orange by Porous Graphene/ZnO Nanocomposite[J]. Environ. Pollution., 2019, 249: 801-811.

[51]

Yu M, Ma Y, Liu J, et al. Sub-Coherent Growth of ZnO Nanorod Arrays on Three-Dimensional Graphene Framework as One-Bulk High-Performance Photocatalyst[J]. Appl. Surf. Sci., 2016, 390: 266-272.

[52]

Malihe KB, Morasae S, Elham A, et al. Well-Designed Ag/ZnO/3D Graphene Structure for Dye Removal: Adsorption, Photocatalysis and Physical Separation Capabilities[J]. J. Colloid. Interf. Sci., 2019, 537: 66-78.

[53]

Zhang YZ, Liu LF, Bruggen BVD, et al. A Free-Standing 3D Nano-Composite Photo-Electrode-Ag/ZnO Nanorods Arrays on Ni Foam Effectively Degrade Berberine[J]. Chem. Eng. J., 2019, 373: 179-191.

[54]

Xu F, Chen J, Guo L, et al. In Situ Electrochemically Etching-Derived ZnO Nanotube Arrays for Highly Efficient and Facilely Recyclable Photocatalyst[J]. Appl. Surf. Sci., 2012, 258: 8 160-8 165.

[55]

Ali W, Ullah H, Zada A, et al. Effect of Calcination Temperature on the Photoactivities of ZnO/SnO2 Nanocomposites for the Degradation of Methyl Orange[J]. Mater. Chem. Phy., 2018, 213: 259-266.

[56]

Lu T, Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Computat. Chem., 2012, 33: 580-592.

[57]

Ren T, Jin ZH, Yang J, et al. Highly Efficient and Stable p-LaFeO3/n-ZnO Heterojunction Photocatalyst for Phenol Degradation under Visible Light Irradiation[J]. J. Hazard. Mater., 2019, 377: 195-205.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/