Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing

Qing Teng , Xiu Li , Qingsong Wei

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 183 -191.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 183 -191. DOI: 10.1007/s11595-020-2242-4
Metallic Material

Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing

Author information +
History +
PDF

Abstract

Diffusion bonding between Al and Cu was successfully performed by hot isostatic pressing (HIP). To improve the strength of diffusion bonding joint, pure nickel foils with different thickness were used as intermediate layer. Microstructure of the interface between Al and Cu was investigated by X-ray diffraction (XRD) technique, secondary electron microscopy (SEM), and nano-indentation tests. When the temperature was 500 °C and held for 3 h with a processing pressure of 50 MPa, Al and Cu could be bonded with its interface formed by several diffusion layers. With the addition of Ni interlayer, the diffusion of aluminum atoms was effectively hindered, and the interface became smoother. The tensile strength of bonded joints increases with increasing the thickness of Ni interlayer, which contributes to a reduction in the thickness of intermetallic compounds (IMCs) and well bonding quality of Al-Cu joints.

Keywords

hot isostatic pressing / diffusion bonding / aluminum / copper / IMCs; hardness

Cite this article

Download citation ▾
Qing Teng, Xiu Li, Qingsong Wei. Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(1): 183-191 DOI:10.1007/s11595-020-2242-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jr E A S, Williams J C. Progress in Structural Materials for Aerospace Systems1[J]. Acta Mater., 2003, 51(19): 5 775-5 799.

[2]

Liu C H, Li X L, Wang S H, et al. A Tuning Nano-precipitation Approach for Achieving Enhanced Strength and Good Ductility in Al Alloys[J]. Mater. Des., 54: 144–148

[3]

Li H, Chen W, Dong L, et al. Interfacial Bonding Mechanism and Annealing Effect on Cu-Al Joint Produced by Solid-Liquid Compound Casting[J]. J. Mater. Process. Technol., 2018, 252: 795-803.

[4]

Berski S, Banaszek G, Dyja H. Analysis of Die Shape Infuence on Al-Cu Bimetal Charge Yield during Extrusion Process[J]. Metall. Min. Ind., 2011, 3(7): 45-47.

[5]

Berski S, Dyja H, Maranda A, et al. Analysis of Quality of Bimetallic Rod after Extrusion Process[J]. J. Mater. Process. Technol., 2006, 177(1–3): 582-586.

[6]

Khosravifard A, Ebrahimi R. Investigation of Parameters Affecting Interface Strength in Al/Cu Clad Bimetal Rod Extrusion Process[J]. Mater. Des., 2010, 31(1): 493-499.

[7]

Dubourg L, Pelletier H, Vaissiere D, et al. Cornet. Mechanical Characterisation of Laser Surface Alloyed Aluminium–Copper Systems[J]. Wear, 2002, 253(9–10): 1 077-1 085.

[8]

Yuan H U, Chen Y Q, Li L, et al. Microstructure and Properties of Al/ Cu Bimetal in Liquid–Solid Compound Casting Process[J]. T. Nonferr. Metal. Soc., 2016, 26(6): 1 555-1 563.

[9]

Zhang L Y, Yao J J, Zeng X Y, et al. Research Progress of Copper Cladding Aluminum Composites[J]. T. Nonferr. Metal. Soc., 2014, 24(5): 1 275-1 284.

[10]

Hug E, Bellido N. Brittleness Study of Intermetallic (Cu, Al) Layers in Copper-Clad Aluminium Thin Wires[J]. Mater. Sci. Eng., A, 2011, 528(22): 7 103-7 106.

[11]

Lee W B, Bang K S, Jung S B. Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints during Annealing[J]. J. Alloys Compd., 2005, 390(1): 212-219.

[12]

Tavassoli S, Abbasi M, Tahavvori R. Controlling of IMCs Layers Formation Sequence, Bond Strength and Electrical Resistance in Al-Cu Bimetal Compound Casting Process[J]. Mater. Des., 2016, 108: 343-353.

[13]

Abbasi M, Taheri A K, Salehi M T. Growth Rate of Intermetallic Compounds in Al/Cu Bimetal Produced by Cold Roll Welding Process[J]. J. Alloys Compd., 2001, 319(1–2): 233-241.

[14]

Zare G R, Divandari M, Arabi H. Investigation On Interface of Al/Cu Couples in Compound Casting[J]. Mater. Sci. Technol., 2013, 29(2): 190-196.

[15]

Xia C Z, Li Y J, Wang J. Microstructure and Phase Constitution Near Interface of Cu/Al Vacuum Brazing[J]. Vacuum, 2008, 82(8): 799-804.

[16]

Niu Z W, Zheng Y, Liu K K, et al. Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal[J]. Acta Metall. Sinica, 2017, 53(6): 719-725.

[17]

Zhang H, Wei C, He J, et al. Formation and Evolution of Cntermetallic Compounds at Interfaces of Cu/Al Joints by Ultrasonic-Assisted Sol-dering[J]. J. Mater. Process. Technol., 2015, 223: 1-7.

[18]

Guo Y, Liu G, Jin H, et al. Intermetallic Phase Formation in Diffusion-bonded Cu/Al Laminates[J]. J. Mater. Sci., 2011, 46(8): 2 467-2 473.

[19]

Mahendran G, Balasubramanian V, Senthilvelan T. Mechanical and Metallurgical Properties of Diffusion Bonded AA2024 Al and AZ31B Mg[J]. Adv. Mater. Res., 2012, 1(2): 147-160.

[20]

Meng Z H, Wang X, Guo W, et al. Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 368-372.

[21]

Feng J, Xue S. Growth Behaviors of Intermetallic Compound Layers in Cu/Al Joints Brazed with Zn–22Al and Zn–22Al–0.05Ce Filler Met-als[J]. Mater. Des., 2013, 51(5): 907-915.

[22]

Lee T H, Lee Y J, Park K T, et al. Controlling Al/Cu Composite Diffusion Layer during Hydrostatic Extrusion by Using Colloidal Ag[J]. J. Mater. Process. Technol., 2013, 213(3): 487-494.

[23]

Meshram S D, Reddy G M. Friction Welding of AA6061 to AISI 4340 Using Silver Interlayer[J]. Def. Technol., 2015, 11(3): 292-298.

[24]

Kuk S W, Ryu H J, Yu J. Effects of the Al/Ni Ratio on the Reactions in the Compression-bonded Ni-Sputtered Al Foil Multilayer[J]. J. Alloys Compd., 2014, 589(4): 455-461.

[25]

Kuk S W, Ryu H J, Yu J. Self-propagation Combustion Behavior with Varying Al/Ni Ratios in Compression-Bonded Ni-Sputtered Al Foil Multilayers[J]. Metall. Mater. Trans. A, 2014, 45(12): 5 691-5 698.

[26]

Kuk S W, Yu J, Ryu H J. Stationary Self-Propagation Combustion with Variations in the Total Layer Thickness of Compression-Bonded Ni-Sputtered Al Foil Multilayers[J]. J. Alloys Compd., 2015, 626: 16-19.

[27]

Li H Y, Chen W G, Dong L L, et al. Interfacial Bonding Mechanism and Annealing Effect on Cu-Al Joint Produced by Solid-Liquid Compound Casting[J]. J. Mater. Process. Technol., 2017, 252: 795-803.

[28]

Kim I K, Sun I H. Effect of Heat Treatment on the Bending Behavior of Tri-layered Cu/Al/Cu Composite Plates[J]. Mater. Des., 2013, 47(9): 590-598.

[29]

Sheng L Y, Yang F, Xi T F, et al. Infuence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated by Cold Rolling[J]. Composites Part B, 2011, 42(6): 1 468-1 473.

[30]

Zhang R, Lin G, Wang L, et al. Effect of Heat Treatment on the Interface of Al/Cu Bimetal Laminated Material[J]. Ordnance Mater. Sci. Eng., 2011, 34(5): 5-8.

[31]

Zhang Y H, Qin J, Zhao H J, et al. Interfacial Microstructure Evolution of Copper/Aluminium Laminates with Different Annealing Pro-cesses[J]. Adv. Mater. Res., 2011, 239–242: 2 976-2 980.

[32]

Abdul-Lettif A M. Investigation of Interdiffusion in Copper–Nickel Bilayer Thin Films[J]. Physica B, 2007, 388(1–2): 107-111.

[33]

Xiong J, Peng Y, Zhang H, et al. Microstructure and Mechanical Properties of Al-Cu Joints Diffusion-bonded with Ni or Ag Interlayer[J]. Vacuum, 2018, 147: 187-193.

[34]

Lee S, Lee M G, Lee S P, et al. Effect of Bonding Interface on De-lamination Behavior of Drawn Cu/Al Bar Clad Material[J]. T. Nonferr. Metal. Soc., 2012, 22: 645-649.

[35]

Qi J L, Wang Z Y, Lin J H, et al. Graphene-Enhanced Cu Composite Interlayer for Contact Reaction Brazing Aluminum Alloy 6061[J]. Va c -uum, 2017, 136: 142-145.

[36]

Zhang H T, Cao J, Lu H. Reactive Brazing of Aluminium to Aluminium-Based Composite Reinforced with Alumina Borate Whiskers with Cu Interlayer[J]. Vacuum, 2009, 84(4): 474-477.

[37]

Yousef M V, Toroghinejad M R, Rezaeian A. The Effects of Oxide Film and Annealing Treatment on the Bond Strength of Al–Cu Strips in Cold Roll Bonding Process[J]. Mater. Des., 2014, 53: 174-181.

[38]

Ling C, Zhong Y, Chen Y, et al. Fabrication of Lateral Compound Cu/ Al Composites by Conclad Continuous Extrusion[J]. Spec.Cast. Non-ferr. Alloys, 2017, 37(1): 89-93.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/