Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations

Qin Zhao , Boyu Zhang , Yong Peng , Zhixiong Huang , Song Wang , Yibing Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 57 -64.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 57 -64. DOI: 10.1007/s11595-020-2227-3
Advanced Material

Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations

Author information +
History +
PDF

Abstract

To promote the stability and efficiency, quadruple-cation perovskite system (blending of MA, FA, Cs, I, Br, etc) was introduced to substitute the traditional MAPbI3 perovskite. Perovskite films degraded by water can be recovered by a simple method. The PbI2 residues decomposed from perovskite were transformed into perovskite again, which gave rise to remarkably boosted optical properties, drastically improved film morphology and largely suppressed pinholes. The efficiency of the repairing method was testified by fieldemission scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and so on. The power conversion efficiency of fixed perovskite solar cells improved from around 3% to 15.78% (0.16 cm2, mask area), and 12.56% at area of 1 cm2, which prove that this method is very effective.

Keywords

quadruple-cation / perovskite solar cells / repair

Cite this article

Download citation ▾
Qin Zhao, Boyu Zhang, Yong Peng, Zhixiong Huang, Song Wang, Yibing Cheng. Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(1): 57-64 DOI:10.1007/s11595-020-2227-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Noh J H, Sang H I, Jin H H, et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells[J]. Nano Lett., 2013, 13(4): 1 764-1 769.

[2]

Stranks S D, Eperon G E, Grancini G, et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013, 342(6156): 341-344.

[3]

Xing G, Mathews N, Sun S, et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347.

[4]

Ponseca C S Jr, Savenije T J, Abdellah M, et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination[J]. J. Am. Chem. Soc., 2014, 136(14): 5 189-5 192.

[5]

Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6 050-6 051.

[6]

Fu F, Pisoni S, Weiss T P, et al. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells[J]. Adv. Sci., 2018, 5(3): 1 700 675

[7]

Jeon N J, Noh J H, Yang W S, et al. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells[J]. Nature, 2015, 517(7535): 476-480.

[8]

Yang W S, Park B, Jung E H, et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells[J]. Science, 2017, 356(6345): 1 376-1 379.

[9]

Bu T, Liu X, Zhou Y, et al. Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells[J]. Energy Environ. Sci., 2017, 10(12): 1-16.

[10]

Bu T, Liu X, Chen R, et al. Organic/Inorganic Self-Doping Controlled Crystallization and Electronic Properties in Mixed Perovskite Solar Cells[J]. J. Mater. Chem. A, 2018, 6(15): 1-16.

[11]

Leijtens T, Bush K, Cheacharoen R, et al. Towards Enabling Stable Lead Halide Perovskite Solar Cells; Interplay Between Structural, Environmental, and Thermal Stability[J]. J. Mater. Chem. A, 2017, 5(6240): 11 483-11 500.

[12]

Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite[J]. Adv. Energy Mater., 2015, 5(15): 1 500 477-1 500 485.

[13]

Kim H, Seo J, Park N. Material and Device Stability in Perovskite Solar Cells[J]. Chemsuschem, 2016, 9(18): 1-14.

[14]

Asghar M I, Zhang J, Wang H, et al. Device Stability of Perovskite Solar Cells-a Review[J]. Renew. Sust. Energ. Rev., 2017, 77: 131-146.

[15]

Manser J S, Saidaminov M I, Christians J A, et al. Making and Breaking of Lead Halide Perovskites[J]. Acc. Chem. Res., 2016, 10(3): 330-338.

[16]

Frost J M, Butler K T, Brivio F, et al. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells[J]. Nano Lett., 2014, 15(5): 2 584-2 590.

[17]

Noh J H, Im S H, Heo J H, et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells[J]. Nano Lett., 2013, 13(4): 1 764-1 769.

[18]

Huang W, Manser J S, Kamat P V, et al. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions[J]. Chem. Mater., 2016, 28(1): 303-311.

[19]

Christians J A H, P A M K, P V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air[J]. J. Am. Chem. Soc., 2015, 137(4): 1 530-1 538.

[20]

Leguy A M A, Hu Y, Campoy-Quiles M, et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells[J]. Chem. Mater., 2015, 27(9): 3 397-3 407.

[21]

Zhang L, Sit P H L. Ab Initio Study of Interaction of Water, Hydroxyl Radicals and Hydroxide Ions with CH3NH3PbI3 and CH3NH3PbBr3 Surfaces[J]. J. Phys. Chem. C, 2015, 119(39): 22 370-22 378.

[22]

Lee J, Kim D, Kim H, et al. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell[J]. Adv. Energy Mater., 2015, 5(20): 1 501 310-1 501 318.

[23]

Ruess R, Benfer F, Bocher F, et al. Stabilization of Organic–Inorganic Perovskite Layers by Partial Substitution of Iodide by Bromide in Methylammonium Lead Iodide[J]. Chem. Phys. Chem., 2016, 17(10): 1 505-1 511.

[24]

Kim H, Seo J, Park N. Material and Device Stability in Perovskite Solar Cells[J]. Chem. Sus. Chem., 2016, 9(18): 1-14.

[25]

Huang X, Hu Z, Xu J, et al. Low-Temperature Processed Ultrathin TiO2 for Efficient Planar Heterojunction Perovskite Solar Cells[J]. Electrochim Acta, 2017, 231: 77-84.

[26]

Bu T, Liu X, Chen R, et al. Organic/Inorganic Self-Doping Controlled Crystallization and Electronic Properties in Mixed Perovskite Solar Cells[J]. J. Mater. Chem. A, 2018, 6(15): 6 319-6 326.

[27]

Zhou H, Chen Q, Li G, et al. Photovoltaics. Interface Engineering of Highly Efficient Perovskite Solar Cells[J]. Science, 2014, 345(6196): 542-546.

[28]

Sakai N, Pathak S, Chen H W, et al. The Mechanism of Toluene-Assisted Crystallization of Organic–Inorganic Perovskites for Highly Efficient Solar Cells[J]. J. Mater. Chem. A, 2016, 4(12): 4 464-4 471.

[29]

Jeon N J, Noh J H, Kim Y C, et al. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells[J]. Nat. Mater., 2014, 13(9): 897-903.

[30]

Passoni L, Ghods F, Docampo P, et al. Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells[J]. Acs. Nano., 2013, 7(11): 10 023-12 231.

[31]

Lang U, Elisabeth M, Nicola N, et al. Microscopical Investigations of PEDOT:PSS Thin Films[J]. Adv. Funct. Mater., 2009, 19(8): 1 215-1 220.

[32]

Kim H, Lee J, OK S, et al. Effects of Pentacene-Doped PEDOT:PSS as a Hole-Conducting Layer on the Performance Characteristics of Polymer Photovoltaic Cells[J]. Nanoscale Res. Lett., 2012, 7(1): 5-11.

[33]

Jo Y, Oh K S, Kim M, et al. High Performance of Planar Perovskite Solar Cells Produced from PbI2 (DMSO) and PbI2 (NMP) Complexes by Intramolecular Exchange[J]. Adv. Mater. Interfaces, 2016, 3(10): 1 500 768-1 500 772.

[34]

Park T, Park C, Kim B, et al. Flexible PEDOT Electrodes with Large Thermoelectric Power Factors to Generate Electricity by the Touch of Fingertips[J]. Energy Environ. Sci., 2013, 6(3): 788-792.

[35]

Lee M M, Teuscher J, Miyasaka T, et al. Supllement Efficient Hybrid Solar Cells based on Meso-Superstructured Organometal Halide Perovskites [J]. Science, 2012, 338(6107): 643-647.

[36]

Massonnet N, Carella A, Jaudouin O, et al. Improvement of the Seebeck Coefficient of PEDOT:PSS by Chemical Reduction Combined with a Novel Method for Its Transfer Using Free-Standing Thin Films[J]. J. Mater. Chem. C, 2014, 2(7): 1 378-1 283.

[37]

Kim H S, Mora-Sero I, Gonzalez-Pedro V, et al. Mechanism of Carrier Accumulation in Perovskite Thin-Absorber Solar Cells[J]. Nat. Commun., 2013, 4(7): 2 242-2 249.

[38]

Nayak P K, Moore D T, Wenger B, et al. Mechanism for Rapid Growth of Organic-Inorganic Halide Perovskite Crystals[J]. Nat. Commun., 2016, 7: 13 303.

[39]

Wang L, Liu F, Liu T, et al. Pinhole-Free Perovskite Films by Methylamine Iodide Solution-Assisted Repair for High-Efficiency Photovoltaics under Ambient Conditions[J]. ACS Appl. Mater. Interfaces, 2016, 8(45): 30 920-30 925.

[40]

Jung M, Kim Y C, Jeon N J, et al. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells[J]. Chem. Sus. Chem., 2016, 9(18): 2 592-2 596.

[41]

Stranks S D, Eperon G E, Grancini G, et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013, 342(6156): 341-344.

[42]

Shi D, Adinolfi V, Comin R, et al. Solar Cells. Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals[J]. Science, 2015, 347(6221): 519-522.

[43]

Tang W, Chen P, Feng X, et al. Dissipative Particle Dynamics Simulation on Bonding Reaction between Surface Modified Nanoparticles[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 95-101.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/