Negative Thermal Expansion of (ZrMg) xY2–2xMo3O12 Ceramics with Low Hygroscopicity

Xianli Wang , Linjie Fu , Kun Xu , Peng Yang , Xiansheng Lu , Erjun Liang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 53 -56.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 53 -56. DOI: 10.1007/s11595-020-2226-4
Advanced Material

Negative Thermal Expansion of (ZrMg) xY2–2xMo3O12 Ceramics with Low Hygroscopicity

Author information +
History +
PDF

Abstract

(ZrMg) xY2–2xMo3O12 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1) ceramics have been synthesized to obtain less hygroscopicity and negative thermal expansion. With increasing the substitution of (ZrMg)6+ (ion radius 7.2 ×10–11 m) for Y3+ (ion radius 9×10−11 m), the crystal water are reduced obviously. The linear thermal expansion coeffcient is improved with increasing the content of (ZrMg)6+. The material shows near zero thermal expansion (−0.12×10−6 K−1, 430–870 K) with x=0.7. Meanwhile, ZrMgMo3O12 shows low non-hygroscopicity and negative thermal expansion, but low softening temperature. After substituting amount of Y3+ for (ZrMg)6+ in ZrMgMo3O12 (x=0.8), the softening temperature increases remarkably (750 K to 830 K) and it presents near zero thermal expansion.

Keywords

negative thermal expansion / hygroscopicity / raman spectroscopy / ceramics

Cite this article

Download citation ▾
Xianli Wang, Linjie Fu, Kun Xu, Peng Yang, Xiansheng Lu, Erjun Liang. Negative Thermal Expansion of (ZrMg) xY2–2xMo3O12 Ceramics with Low Hygroscopicity. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(1): 53-56 DOI:10.1007/s11595-020-2226-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Korthuis V, Khosrovani N, Sleight A W. Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series[J]. Chem. Mater., 1995, 7: 412-417.

[2]

Evans J S O, Mary T M, Vogt T. Negative Thermal Expansion in Zr-W2O8 and HfW2O8[J]. Chem. Mater., 1996, 8: 2 809-2 823.

[3]

Liang E J. Negative Thermal Expansion Materials and Their Applications: a Survey of Recent Patents[J]. Rec. Pat. Mater. Sci., 2010, 3: 106-128.

[4]

Marinkovic B A, Jardim P M, Ari M. Low Positive Thermal Expansion in HfMgMo3O12[J]. Phys. Stat. Sol. (b), 2008, 245(11): 2 514-2 519.

[5]

Ari M, Jardim P M, Marinkovic B A. Thermal Expansion of Cr2x-Fe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 Sold Solutions[J]. J. Solid State Chem., 2008, 181: 1 472-1 479.

[6]

Liang E J, Liang Y, Zhao Y. Low-frequency Phonon Modes and Negative Thermal Expansion in A(MO4)2 (A = Zr, Hf and M = W, Mo) by Raman and Terahertz Time-domain Spectroscopy[J]. J. Phys. Chem. A, 2008, 112: 6 577-6 581.

[7]

Miller W, Smith C W, Mackenzie D S. Negative Thermal Expansion: A Review[J]. J. Mater. Sci., 2009, 44: 5 441-5 451.

[8]

Liu Q Q, Yang J, Cheng X N. Preparation and Characterization of Negative Thermal Expansion Sc2W3O12/Cu Core-shell Composite[J]. Ceram. Int., 2012, 38: 541-545.

[9]

Baojan A, Marinkovic M A. Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials[J]. Chem. Mater., 2009, 21: 2 886-2 894.

[10]

Tamas V, Julianna L, Moats. Thermochemistry of A2M3O12 Negative Thermal Expansion Materials [J]. J. Mater. Res., 2007, 22(9): 2 512-2 523.

[11]

Liu X S, Ge X H, Liang E J. Effects of Al Particles and Thin Layer on Thermal Expansion and Conductivity of Al-Y2Mo3O12 Cermets[J]. Chin. Phys. B, 2017, 26(11): 118 101-118 105.

[12]

Evans J S O, Mary T M, Sleight A W. Negative Thermal Expansion in a Large Molybdate and Tungstate Family[J]. J. Solid State Chem., 1997, 133: 580-584.

[13]

Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion Materials[J]. Physica B, 1998, 311: 241-243.

[14]

Tomoko S, Atsushi O. Zero Thermal Expansion in (Al2x(HfMg)1-x) (WO4)3 [J]. J. Am. Ceram. Soc., 2006, 89(2): 691-693.

[15]

Evans J O S, Mary T A, Sleight A W. Negative Thermal Expansion in Sc2(WO4)3[J]. J. Solid State Chem., 1998, 137: 148-160.

[16]

Li M Z, Yong G C, Hao S H. Properties of Negative Thermal Expansion β-eucryptite Ceramics Prepared by Spark Plasma Sintering[J]. Chin. Phys. B, 2018, 27(9): 096 501-096 506.

[17]

Li Z Y, Song W B, Liang E J. Structures PhaseTransition and Crystal Water of Fe2-xYxMo3O12 [J]. J. Phys. Chem. C, 2011, 115: 17 806-17 811.

[18]

Wu M M, Hu Z B, Liu Y T. Thermal Expansion Properties of Ln2-xCrx-Mo3O12 (Ln = Er and Y)[J]. Mater. Res. Bull., 2009, 44: 1 943-1 947.

[19]

Liu H F, Wang X C, Zhang Z P. Synthesis and Thermal Expansion Properties of Y2-xLaxMo3O12 (x=0, 0.5, 2)[J]. Ceram Int., 2012, 38: 6 349-6 352.

[20]

Yang H T, Diao Z C, Shang F L. Thermal Expansion Properties of Solid Solution Y2-xSmxW3O12[J]. Chin. Tungsten Industry, 2010, 25(5): 40-43.

[21]

Song W B, Yuan C, Liang E J. Phase Transition and Negative Thermal Expansion of Fe2-xYxMo3O12[J]. Chin. J. Light Scattering, 2010, 23(4): 346-351.

[22]

Chen D, Yuan B, Yuan Hanli. Phase Transition and Thermal Expansion Properties of Cr1.5-xScxZr0.5Mo2.5V0.5O12[J]. Ceram Int., 2018, 44: 9 609-9 615.

[23]

Wang L, Liang E J, Jia Y. Negative Thermal Expansion Correlated with Polyhedral Movements and Distortions in Orthorhombic Y2Mo3O12[J]. Mater. Res. Bull., 2013, 48: 2 724-2 729.

[24]

Li Q J, Yuan B H, Liang E J. The Phase Transition Hygroscopicity and Thermal Expansion Properties of Yb2-xAlxMo3O12[J]. Chin. Phys. B, 2012, 21(4): 046 501-046 506.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/