Effect of Pressure on Boundary Slip of Thin Film Lubrication Using Atomistic Simulation

Ling Pan , Hao Zhang , Shiping Lu , Youhong Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 47 -52.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 47 -52. DOI: 10.1007/s11595-020-2225-5
Advanced Material

Effect of Pressure on Boundary Slip of Thin Film Lubrication Using Atomistic Simulation

Author information +
History +
PDF

Abstract

Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication (TFL). Molecular dynamics (MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalane confined in nanogap at 293 K with two different film thicknesses and a wide range of pressures. The molecular distribution, density and velocity profiles of squalane were analyzed. The results show that the lubricant atoms tend to form layers parallel to the wall, but the lubricant molecules orient randomly throughout the film in the directions both parallel and perpendicular to the wall. Most squalane molecules appear twisted and folded, and extend to several atomic layers so that there are no slips between lubricant layers. The distances between the lubricant layers are irregular rather than broadening far away from the walls. The boundary slip at the interface of bcc Fe (001) and squalane only occurs at high pressure because of the strong nonbond interactions between lubricant atoms and wall atoms. The tendency of boundary slip is more obvious for films with thinner film thickness. According to the simulations, the relationship between the slip length and the pressure is given.

Keywords

boundary slip / thin film lubrication / lubrication mechanism / molecular dynamics simulation / Squalane

Cite this article

Download citation ▾
Ling Pan, Hao Zhang, Shiping Lu, Youhong Chen. Effect of Pressure on Boundary Slip of Thin Film Lubrication Using Atomistic Simulation. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(1): 47-52 DOI:10.1007/s11595-020-2225-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tsige M, Patnaik S S. An All-atom Simulation Study of the Ordering of Liquid Squalane Near a Solid Surface[J]. Chem. Phys. Lett., 2008, 457(4-6): 357-361.

[2]

Karniadakis G, Beskok A A N. Microflows and Nanoflows: Fundamentals and Simulation [M], 2004 New York: Springer.

[3]

Acharya B, Chestnut M, Marek A, et al. A Combined QCM and AFM Study Exploring the Nanoscale Lubrication Mechanism of Silica Nanoparticles in Aqueous Suspension[J]. Tribo. Lett., 2017, 9: 65-115.

[4]

Maali Boisgard R, Chraibi H, et al. Visco-elastic Drag Forces and Crossover from No-slip to Slip Boundary Conditions for Flow Near Air-water Interfaces[J]. Phys. Rev., 2017, 118(1): 8-24.

[5]

Zhang H, Zhang Z, YE H. Molecular Dynamics-based Prediction of Boundary Slip of Fluids in Nanochannels[J]. Microfluid. Nanofluid., 2012, 12(4): 107-115.

[6]

Noorian H, Toghraie D, Azimian A R. Molecular Dynamics Simulation of Poiseuille Flow in a Rough Nano Channel with Checker Surface Roughnesses Geometry[J]. Heat Mass Transf., 2014, 50(1): 105-113.

[7]

Sun J, Wang W, Wang H S. Dependence of Nanoconfined Liquid Behavior on Boundary and Bulk Factors[J]. Phys. Rev. E, 2013, 87(2): 023020

[8]

Zhang C, Chen Y P, Peterson G P. Thermal Slip for Liquids at Rough Solid Surfaces[J]. Phys. Rev. E, 2014, 89(6): 062407

[9]

Goldstein S. Modern Developments in Fluid Dynamics, vol II [M], 1957 Oxford: Clarendon Press.

[10]

Beavers GS, Joseph D D. Boundary Conditions at a Naturally Permeable Wall[J]. J. Fluid Mech., 1967, 30(1): 197-207.

[11]

Ma GJ, Wu C W, Zhou P. Wall Slip and Hydrodynamics of Two-dimensional Journal Bearing[J]. Tribol. Int., 2007, 40: 1056-1066.

[12]

Thompson PA, Troian S M. A General Boundary Condition for Liquid Flow at Solid Surfaces[J]. Nature, 1997, 389(6649): 360-362.

[13]

Priezjev NV, Troian S M. Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films[J]. Phys. Rev. Lett., 2004, 92(1): 018302

[14]

Jing D, Bhushan B. Boundary Slip of Superoleophilic, Oleophobic, and Superoleophobic Surfaces Immersed in Deionized Water, Hexadecane, and Ethylene Glycol[J]. Langmuir, 2013, 29(47): 14691-14700.

[15]

Espinosa RM, Arcifa A, Rossi A, et al. Microslips to “Avalanches” in Confined, Molecular Layers of Ionic Liquids[J]. J. Phys. Chem. Lett., 2013, 5(1): 179-184.

[16]

Choi CH, Kim C J. Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface[J]. Phy. Rev. Lett., 2006, 96: 066001.

[17]

James PE, Chiara G, Neal M, et al. Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces[J]. Langmuir, 2016, 32: 4450-4463.

[18]

Vadakkepatt A, Dong Y, Lichter S, et al. Effect of Molecular Structure on Liquid Slip[J]. Phys. Revi. E, 2011, 84(6): 066311

[19]

Song FQ, Chen X X. A New Slip Boundary Model of Liquid Flows[J]. Adv. Mater. Res., 2013, 629: 611-616.

[20]

Asproulis N, Drikakis D. Wall-mass Effects on Hydrodynamic Boundary Slip[J]. Phys. Rev. E, 2011, 84(3): 031504

[21]

Mittal J. Using Compressibility Factor as a Predictor of Confined Hard-sphere Fluid Dynamics[J]. J. Phys. Chem. B, 2009, 113: 13800-13804.

[22]

Kasiteropoulou D, Karakasidis T E, Liakopoulos A, et al. Dissipative Particle Dynamics Investigation of Parameters Affecting Planar Nanochannel Flows[J]. Sci. Eng. B, 2011, 176(19): 1574-1579.

[23]

Abedi K, Shaari N S, Gunasakaran U V, et al. A Coarse-grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution[J]. J. Chem., 2013, 1: 1-6.

[24]

Asproulis N, Drikakis D. Boundary Slip Dependency on Surface Stiffness[J]. Phys. Rev. E, 2010, 81(6): 061503

[25]

Cai FD, Pan L, Du H, et al. Research on Boundary Slip of Hydrodynamic Lubrication in Micro-nano Scale System with Considering Double-layer Force[J]. Lubri. Eng., 2016, 41(2): 65-70.

[26]

Pan L, Du H, Wang W Q, et al. Experimental Research on Effect of Velocity and Solid Crystal Plane on Boundary Slip[J]. Nanotec. Prec. Eng., 2015, 13(3): 161-166.

[27]

Pan L, Gao C H. Molecular Dynamics Simulation on Pressure and Thickness Dependent Density of Squalane Film[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 955-960.

[28]

Pan L, Gao C H. Molecular Dynamics Simulation on the Compressibility of Pentaerythritol Tetra in Nanogap[J]. J. Mec. Eng., 2015, 51(5): 76-82.

[29]

Pan L, Gao C H. Confined Fluid Density of a Pentaerythritol Tetraheptanoate Lubricant Investigated Using Molecular Dynamics Simulation[J]. Fluid Phase Equilib., 2015, 385: 212-218.

[30]

Fandiño O, Pensado AS, Lugo L, et al. Compressed Liquid Densities of Squalane and Pentaerythritol Tetra(2-ethylhexanoate)[J]. J. Chem. Eng. Da., 2005, 50(3): 939-946.

[31]

Plimpton S. Fast Parallel Algorithms for Short-range Molecular Dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19.

[32]

LAMMPS. Molecular Dynamics Simulator, 2018

[33]

Sun H. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes[J]. Macromolecules, 1995, 28(3): 701-712.

[34]

Sun H. Compass: An Ab Initio Force-field Optimized for Condensed-phase Applications Overview with Details on Alkane and Benzene Compounds[J]. J. Phys. Chem. B, 1998, 102(38): 7338-7364.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/