Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage

Xiaohong Xu , Jia Song , Jianfeng Wu , Yaxiang Zhang , Yang Zhou , Qiankun Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 16 -25.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 35 ›› Issue (1) : 16 -25. DOI: 10.1007/s11595-020-2221-9
Advanced Material

Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage

Author information +
History +
PDF

Abstract

Mullite and corundum co-bonded SiC-based composite ceramics (SiC-mullite-Al2O3) were prepared by using SiC, calcined bauxite and kaolin via pressureless carbon-buried sintering. The low-cost SiCbased composite ceramics designed in this study are expected to be used as thermal storage materials in solar thermal power generation based on the high density and excellent thermal shock resistance. The influences of calcined bauxite addition and sintering temperature on the microstructures, phase compositions, and physical properties of the samples were investigated. Results demonstrated that the introduction of calcined bauxite containing two bonding phases greatly reduced the lowest sintering temperature to 1 400 °C. The SiC-mullite- Al2O3 composite with 40 wt% calcined bauxite sintered at 1 500 °C exhibited optimum performance. The density and bending strength were 2.27 g·cm−3 and 77.05 MPa. The bending strength increased by 24.58% and no cracks were observed after 30 thermal shock cycles, while general clay would reduce the thermal shock resistance of SiC. The SiC-mullite-Al2O3 composites with satisfied performance are expected to be used as thermal storage materials in solar thermal power generation systems.

Keywords

SiC-mullite-Al2O3 composite ceramics / calcined bauxite / solar thermal storage / mechanical performance / thermal shock resistance

Cite this article

Download citation ▾
Xiaohong Xu, Jia Song, Jianfeng Wu, Yaxiang Zhang, Yang Zhou, Qiankun Zhang. Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage. Journal of Wuhan University of Technology Materials Science Edition, 2020, 35(1): 16-25 DOI:10.1007/s11595-020-2221-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Navarro L, Gracia AD, Colclough S, et al. Thermal Energy Storage in Building Integrated Thermal Systems: a Review. Part 1. Active Storage Systems[J]. Renew Energy, 2016, 88: 526-547.

[2]

Venkataramani G, Parankusam P, Ramalingam V, et al. A Review on Compressed Air Energy Storage - a Pathway for Smart Grid and Polygeneration[J]. Renew. Sustain. Energy Rev., 2016, 62: 895-907.

[3]

Behar O, Khellaf A, Mohammedi K. A Review of Studies on Central Receiver Solar Thermal Power Plants[J]. Renew. Sustain. Energy Rev., 2013, 23: 12-39.

[4]

Mohamed SA, Al-Sulaiman FA, Ibrahim NI, et al. A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems[J]. Renew. Sustain. Energy Rev., 2017, 70: 1072-1089.

[5]

Aydin D, Utlu Z, Kincay O. Thermal Performance Analysis of a Solar Energy Sourced Latent Heat Storage[J]. Renew. Sustain. Energy Rev., 2015, 50: 1213-1225.

[6]

Sharma A, Tyagi VV, Chen C, et al. Review on Thermal Energy Storage with Phase Change Material and Applications[J]. Renew Sustain Energy Rev., 2009, 13: 318-345.

[7]

Khadiran T, Hussein MZ, Zainal Z, et al. Advanced Energy Storage Materials for Building Applications and Their Thermal Performance Characterization: a Review[J]. Renew. Sustain. Energy Rev., 2016, 57: 916-928.

[8]

Xu B, Li P, Chan C. Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: a Review to Recent Developments[J]. Appl. Energy, 2015, 160: 286-307.

[9]

Zhang H, Baeyens J, Cáceres G, et al. Thermal Energy Storage: Recent Developments and Practical Aspects[J]. Prog. Energy Combust. Sci., 2016, 53: 1-40.

[10]

Liu M, Steven Tay NH, Bell S, et al. Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies[J]. Renew Sustain Energy Rev., 2016, 53: 1411-1432.

[11]

Tao P, Chang C, Tong Z, et al. Magnetically-accelerated Large-capacity Solar-thermal Energy Storage within High-temperature Phasechange Materials[J]. Energy Environ. Sci., 2019, 12: 1613-1621.

[12]

Wu JF, Cheng H, Xu XH, et al. Effect of Andalusite and Zircon on the Performances of Cordierite-spodumene Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceram. Int., 2016, 42(15): 17858-17865.

[13]

Xu XH, Lao XB, Wu JF, et al. Synthesis and Characterization of Al2O3/ SiC Composite Ceramics via Carbothermal Reduction of Aluminosilicate Precursor for Solar Sensible Thermal Storage[J]. J. Alloy. Compd., 2016, 662: 126-137.

[14]

Wu JF, Leng GH, Xu XH, et al. In-situ Synthesis of a Cordierite-andalusite Composite for Solar Thermal Storage[J]. Sol. Energy Mater. Sol. Cells, 2013, 108: 9-16.

[15]

Xu XH, Zhang YX, Wu JF, et al. In Situ Synthesis of SiC-bonded Cordierite-mullite Ceramics for Solar Thermal Energy Storage[J]. Ceram. Int., 2016, 42: 17503-17512.

[16]

Ibrahim NI, Al-Sulaiman FA, Rahman S, et al. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: a Critical Review[J]. Renew. Sustain Energy Rev., 2017, 74: 26-50.

[17]

Du JG, Ming WY, Cao Y, et al. Particle Removal Mechanism of High Volume Fraction SiCp/Al Composites by Single Diamond Grit Tool[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(2): 324-331.

[18]

Wang H, Yang XJ, Xu JH, et al. Effect of Na3AlF6 Addition and Surface Modification of SiCp on the Microstructure and Mechanical Properties of SiCp/Al Composites[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(3): 534-540.

[19]

Xu XH, Lao XB, Wu JF, et al. Effect of MnO2 on Properties of SiC-mullite Composite Ceramics for Solar Sensible Thermal Storage[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(3): 491-495.

[20]

Li HJ, Fu QG, Shi XH, et al. SiC Whisker-toughened SiC Oxidation Protective Coating for Carbon/carbon Composites[J]. Carbon, 2006, 44(3): 602-605.

[21]

Wang HL, Chen JY, Yu PF, et al. Temperature-dependent Fracture Strength and the Effect of Oxidation for ZrB2-SiC Ceramics[J]. J. Eur. Ceram. Soc., 2018, 38: 1112-1117.

[22]

Xu XH, Zhao F, Wu JF, et al. Research on Microstructre and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan Univ. Technol., 2009, 31: 8-11.

[23]

Wu JF, Fang BZ, Xu XH, et al. Preparation and Characterization of Alumina-silicon Carbide-zirconia Thermal Storage Ceramics for Solar Thermal Power Generation[J]. J. Chin. Ceram. Soc., 2013, 41(8): 1063-1069.

[24]

Ando K, Chu M, Tsuji K, et al. Crack Healing Behaviour and High-temperature Strength of Mullite/SiC Composite Ceramics[J]. J. Eur. Ceram. Soc., 2002, 22(8): 1313-1319.

[25]

Wu JF, Jiao GH, Xu XH, et al. Thermal Shock Behavior and EPMA of Al2O3 Matrix Composite Ceramics Used in Solar Thermal Power[J]. Chin. Ceram. Ind., 2010, 17: 8-13.

[26]

Xu XH, Rao ZG, Wu JF, et al. In-situ Synthesis and Thermal Shock Resistance of Cordierite/silicon Carbide Composites Used for Solar Absorber Coating[J]. Sol. Energy Mater. Sol. Cells, 2014, 130: 257-263.

[27]

Xu XH, Lao XB, Wu JF, et al. In-situ Synthesis of SiCw/Al2O3, Composite Honeycomb Ceramics by Aluminium-assisted Carbothermal Reduction of Coal Series Kaolin[J]. Appl. Clay Sci., 2016, 126: 122-131.

[28]

André D, Levraut B, Tessier-Doyen N, et al. A Discrete Element Thermo-mechanical Modelling of Diffuse Damage Induced by Thermal Expansion Mismatch of Two-phase Materials[J]. J. Comput. Appl. Math., 2017, 318: 898-916.

[29]

Li Z, Bradt RC. Thermal Expansion and Thermal Expansion Anisotropy of SiC Polytypes[J]. J. Am. Ceram. Soc., 1987, 70(7): 445-448.

[30]

Rao Z. Preparation, Microstructure and Properties of SiC-sialon Composite Ceramics Used for Solar Thermal Power Generation Receiver [M], 2015 Wuhan: Wuhan Univ. Technol. Press.

[31]

Lian JW, Zhu B, Li XC, et al. Effect of In Situ Synthesized SiC Whiskers and Mullite Phases on the Thermo-mechanical Properties of Al2O3-SiC-C Refractories[J]. Ceram. Int., 2016, 42(14): 16266-16273.

[32]

Cheng HF, Liu Q, Yang J, et al. The Thermal Behavior of Kaolinite Intercalation Complexes-a Review[J]. Thermochim. Acta, 2012, 545: 1-13.

[33]

Wu JF, Fang BZ, Xu XH, et al. Synthesis of Refractory Cordierite from Calcined Bauxite, Talcum and Quartz[J]. J. Wuhan Univ. Technol., 2013, 28: 329-333.

[34]

Huo CX, Guo LG, Feng L, et al. Improving the Oxidation Resistance under Thermal Shock Condition of SiC-coated C/C Composites with Refined SiC Grain Size Using Ferrocene[J]. Surf. Coat Technol., 2017, 316: 39-47.

[35]

Moroz IK, Mironova AF. Establishing the Composition of Glass Phase in an Electrical-engineering Porcelain[J]. Glass Ceram., 1986, 43(5): 209-212.

[36]

Pan ZY, Wang Y, Li XW, et al. Fabrication and Characterization of Heat and Plasma Treated SiC/Al2O3-YSZ Feed Stocks Used for Plasma Spraying[J]. Vacuum, 2012, 86(10): 1558-1567.

[37]

Wu JF, Hu C, Xu XH, et al. Effect of Andalusite and Zircon on the Performances of Cordierite-spodumene Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceram. Int., 2016, 42(15): 17858-17865.

[38]

Wu JF, Zhang YX, Xu XH, et al. Fabrication and Properties of In-situ Mullite-bonded Si3N4/SiC Composites for Solar Heat Absorber[J]. Mater. Sci. Eng. A., 2016, 652: 271-278.

[39]

Hartmann P. Zerodur-bending Strength: Review of Achievements[J]. Optomechanical Eng., 2017, 4: 10371-10374.

[40]

Chen YF, Wang MC, Hon MH. Phase Transformation and Growth of Mullite in Kaolin Ceramics[J]. J. Eur. Ceram. Soc., 2004, 24(8): 2389-2397.

[41]

She JH, Ohji T, Deng ZY. Thermal Shock Behavior of Porous Silicon Carbide Ceramics[J]. J. Am. Ceram. Soc., 2010, 85(8): 2125-2127.

[42]

Kim BN, Katsukawa Y, Ahn BW, et al. Evaluation of R-curve Behavior in SiC Particle-dispersed Al2O3 Composite[J]. J. Ceram. Soc. Jpn., 2010, 104: 872-876.

[43]

Fang B. Synthesizing Cordierite from Calcined Bauxite and Its Application in the Thermal Energy Storage Materials [M], 2013 Wuhan: Wuhan Univ. Technol. Press.

[44]

Jabbarzare S, Abdellahi M, Ghayour H, et al. A Review on the Synthesis and Magnetic Properties of the Cerium Ferrite Ceramic[J]. J. Alloy. Compd., 2017, 694: 800-807.

[45]

Khare S, Dell’Amico M C, Knight C, et al. Selection of Materials for High Temperature Sensible Energy Storage[J]. Sol. Energy Mater. Sol. Cells, 2013, 115: 114-122.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/