Phase Transformation Strengthening of Hot Extruded Inconel 625 under High-temperature Load Environment

Dexue Liu , Maomao Cui , Wenxu Wang , Hongqiang Nan , Haopeng Cai , Hongdi Xue , Zhi Jia , Qinglin Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1297 -1308.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1297 -1308. DOI: 10.1007/s11595-019-2192-x
Advanced Material

Phase Transformation Strengthening of Hot Extruded Inconel 625 under High-temperature Load Environment

Author information +
History +
PDF

Abstract

Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 °C and below. When the creep temperature rises to 750 °C, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10−3 s−1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3 (Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times.

Keywords

hot-extruded Inconel 625 alloy / phase transformation strengthening / temperature sensitivity characteristics / Cr-rich M23C6 carbides / δ phase

Cite this article

Download citation ▾
Dexue Liu, Maomao Cui, Wenxu Wang, Hongqiang Nan, Haopeng Cai, Hongdi Xue, Zhi Jia, Qinglin Li. Phase Transformation Strengthening of Hot Extruded Inconel 625 under High-temperature Load Environment. Journal of Wuhan University of Technology Materials Science Edition, 2020, 34(6): 1297-1308 DOI:10.1007/s11595-019-2192-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He J, Lavernia E. Development of Nanocrystalline Structure during Cryomilling of Inconel 625[J]. J. Mater. Res., 2001, 16(9): 2 724-2 732.

[2]

Liu D, Cheng X, Zhang X, et al. Effects of Heating and Hot Extrusion Process on Microstructure and Properties of Inconel 625 Alloy[ J]. J. Wuhan Univ. Tech., 2016, 31(6): 1368-1376.

[3]

Yuan Y, Gu Y, Osada T, et al. A new Method to Strengthen Turbine Disc Superalloys at Service Temperatures[J]. Scripta Mater., 2012, 66(11): 884-889.

[4]

Yu H, Yang W, Cui H, et al. Microstructures and Tensile Properties of Hot-extruded Mg-6Zn-xCe (x=0, 0.6, 1.0, 2.0) Alloys[J]. J. Wuhan Univ. Tech., 2019, 34(1): 150-155.

[5]

Nagumo Y, Toshimitsu J, Sugiura R, et al. Ito Yusuke. Behavior of Branch Cracking and the Microstructural Strengthening Mechanism of Polycrystalline Ni-base Superalloy, IN100 under Creep Condition[J]. Mater. Trans., 2011, 52(10): 1 876-1 884.

[6]

Oh J, Yoo B, Choi I, et al. Influence of Thermo-mechanical Treatment on the Precipitation Strengthening Behavior of Inconel 740, a Ni-based Superalloy[J]. J. Mater. Res., 2011, 26(10): 1 253-1 259.

[7]

Wang L, Li H, Liu Q, et al. Effect of Sodium Chloride on the Electrochemical Corrosion of Inconel 625 at High Temperature and Pressure[J]. J. Alloys Compd., 2017, 703: 523-529.

[8]

Sivasankaran S, Sivaprasad K, Narayanasamy R, et al. Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior during Grain Refinement of AA 6061-10wt% TiO2 Composite Prepared by Mechanical Alloying[J]. J. Alloys Compd., 2010, 507(1): 236-244.

[9]

Smith T, Esser B, Antolin N, et al. Phase Transformation Strengthening of High-temperature Superalloys[J]. Nat. Commun., 2016, 7: 13 434.

[10]

Smith T, Esser B, Antolin N, et al. Segregation and η ^Phase Formation Along Stacking Faults during Creep at Intermediate Temperatures in a Ni-based Superalloy[J]. Acta Mater., 2015, 100: 19-31.

[11]

Lu K. Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures[J]. Nat. Rev. Mater., 2016, 1(5): 16 019

[12]

Zhou X, Li X, Lu K. Enhanced Thermal Stability of Nanograined Metals Below a Critical Grain Size[J]. Science., 2018, 360(6388): 526-530.

[13]

Wang B, Zhang S, Cheng M, et al. Dynamic Recrystallization Mechanism of Inconel 690 Superalloy during Hot Deformation at High Strain Rate[J]. J. Mater. Eng. Perform., 2013, 22(8): 2 382-2 388.

[14]

Boerman D J, Zhu J H. Study of the Accelerated Creep Fracture Process in AISI 316H Stainless Steel Above 800 °C[J]. Mater. Sci. Eng., 1984, 67(2): 221-227.

[15]

Du B, Hu Z, Sheng L, et al. Creep Behavior and Microstructure Evolution of an As-cast Ni-based K417G Polycrystalline Superalloy[J]. J. Mater. Sci. Technol., 2018, 34(10): 1 805-1 816.

[16]

Ghosh R, Mitra Sk. Computer Simulation of High Temperature Creep Recovery and Work Hardening Rate Measurement Techniques[ J]. Met. Sci., 1983, 17(12): 590-600.

[17]

Yu H, Su Y, Tian N, et al. Microstructure Evolution and Creep Behavior of a [111] Oriented Single Crystal Nickel-based Superalloy during Tensile Creep[J]. Mater. Sci. Eng. A, 2013, 565: 292-300.

[18]

Hrutkay K, Kaoumi D. Tensile Deformation Behavior of a Nickel-based Superalloy at Different Temperatures[J]. Mater. Sci. Eng. A, 2014, 599: 196-203.

[19]

Nguyen D, Banh T, Jung D, et al. A Modified Johnson-Cook Model to Predict Stress-strain Curves of Boron Steel Sheets at Elevated and Cooling Temperatures[J]. High Temp. Mater. Processes., 2012, 31(1): 37-45.

[20]

Singh J, Chakravartty J, Sundararaman M. Work Hardening Behaviour of Service Aged Alloy 625[J]. Mater. Sci. Eng. A, 2013, 576: 239-242.

[21]

Song Y, Guan Z, Wang M, et al. Constant-load Tester Based on Lever-rule and Measurement of Strain Hardening Index and Strain Rate Sensitivity Index[J]. Mater. Sci. Forum, 2007, 551: 173-179.

[22]

Moore I, Taylor J, Tracy M, et al. Grain Coarsening Behaviour of Solution Annealed Alloy625 between 600-800 °C[J]. Mater. Sci. Eng. A, 2017, 682: 402-409.

[23]

Liu D, Guo C, Chai L, et al. Mechanical Properties and Corrosion Resistance of Hot Extruded Mg-2.5 Zn-1Ca alloy[J]. Mater. Sci. Eng. B, 2015, 195: 50-5.

[24]

Hu Y, Su Y, Feng X, et al. Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain[J]. J. Wuhan Univ. Tech., 2019, 34(1): 176-182.

[25]

Huang Y, Strangwood M, Blackwell Pl. Superplastic Behaviour of Inconel 718 Sheet[J]. Mater. Sci. Tech., 2000, 16(11-12): 1 309-1 313.

[26]

Lin Y, Deng J, Jiang Y, et al. Hot tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-based Superalloy[J]. Mater. Des., 2014, 55: 949-957.

[27]

Tian S, Xie J, Zhou X, et al. Microstructure and Creep Behavior of FGH95 Nickel-base Superalloy[J]. Mater. Sci. Eng. A, 2011, 528(4-5): 2 076-2 084.

[28]

Kim S, Choi B, Seo S, et al. High Temperature Deformation Mechanism and Evolution of Dislocation Structure during Creep of Ni-Base Superalloy 713LC[J]. Met. Mater. Int., 2006, 12(1): 1

[29]

Qin X, Guo J, Yuan C, et al. Decomposition of Primary MC Carbide and Its Effects on the Fracture Behaviors of a Cast Ni-base Superalloy[J]. Mater. Sci. Eng. A, 2008, 485(1-2): 74-79.

[30]

Meiqiong O, Yingche M, Hao X, et al. Effect of Solution Annealing on Microstructure and Mechanical Properties of a Ni-Cr-WFe Alloy[J]. J. Mater. Sci. Technol., 2017, 33(11): 1 300-1 307.

[31]

Huang X, Kang Y, Zhou H, et al. Influence of Heat Treatment on the Microstructure of a Unidirectional Ni-base Superalloy[J]. Mater. Lett., 1998, 36(1-4): 210-213.

[32]

Cui T, Wang J, Guan R, et al. Microstructures Evolution of a Ni-Base Superalloy After Long-Term Aging at 750 °C[J]. J. Iron Steel Res. Int., 2007, 14(5): 40-44.

[33]

Shankar V, Rao B, Mannan Sl. Microstructure and Mechanical Properties of Inconel 625 Superalloy[J]. J. Nucl. Mater., 2001, 288(2-3): 222-232.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/