Vanadium Nitride Nanoparticles as Anode Material for Lithium Ion Hybrid Capacitor Applications

Wenchao Liu , Weibin Zhang , Long Kang , Lingbin Kong

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1274 -1278.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1274 -1278. DOI: 10.1007/s11595-019-2189-5
Advanced Material

Vanadium Nitride Nanoparticles as Anode Material for Lithium Ion Hybrid Capacitor Applications

Author information +
History +
PDF

Abstract

A high production efficiency synthesis method was used to produce a stacked vanadium nitride nanoparticle structure with an inexpensive raw material as an anode material and high surface area polystyrene was used the cathode material for lithium ion hybrid capacitors. The Li-HCs cell displayed an excellent specific capacitance of 64.2 F·g-1 at a current density of 0.25 A·g-1 and a wide potential window of 0.01 to 3.5 V. Furthermore, the device exhibited a high energy density of 109.3 W·h·kg-1 at a power density of 512.3 W·kg-1 and retained an energy density of 69.2 W·h·kg-1 at a high power density of 3 498.9 W·kg-1 at 2 A·g-1. Due to the short synthesis time and simple raw materials, this method is suitable for industrial production.

Keywords

energy storage / lithium ion capacitors / anode materials / vanadium nitride

Cite this article

Download citation ▾
Wenchao Liu, Weibin Zhang, Long Kang, Lingbin Kong. Vanadium Nitride Nanoparticles as Anode Material for Lithium Ion Hybrid Capacitor Applications. Journal of Wuhan University of Technology Materials Science Edition, 2020, 34(6): 1274-1278 DOI:10.1007/s11595-019-2189-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi NS, Chen Z, Freunberger SA, et al. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J]. Angewandte Chemie International Edition, 2012, 51: 9 994-10 024.

[2]

Cairns EJ, Albertus P. Batteries for Electric and Hybrid-Electric Vehicles[ J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 299-320.

[3]

Hayner CM, Zhao X, Kung HH. Materials for Rechargeable Lithium- Ion Batteries[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 445-471.

[4]

Park OK, Cho Y, Lee S, et al. Who Will Drive Electric Vehicles, Olivine or Spinel[J]. Energy & Environmental Science, 2011, 4: 1 621-1 633.

[5]

Naoi K, Naoi W, Aoyagi S, et al. New Generation “Nanohybrid Supercapacitor”[J]. Accounts of Chemical Research, 2012, 46: 1 075-1 083.

[6]

Balke N, Jesse S, Morozovska AN, et al. Nanoscale Mapping of Ion Diffusion in a Lithium-Ion Battery Cathode[J]. Nature Nanotechnology, 2010, 5: 749-754.

[7]

Lee SH, Yu SH, Lee JE, et al. Self-Assembled Fe3O4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries Via Geometric Confinement[J]. Nano Letters, 2013, 13: 4 249-4 256.

[8]

Wang Q, Wen ZH, Li JH. A Hybrid Supercapacitor Fabricated With a Carbon Nanotube Cathode and a TiO2-B Nanowire Anode[J]. Adv. Funct. Mater., 2006, 16: 2 141-2 146.

[9]

Lee SW, Yabuuchi N, Gallant BM, et al. High-Power Lithium Batteries From Functionalized Carbon-Nanotube Electrodes[J]. Nature Nanotechnology, 2010, 5: 531-537.

[10]

Ma XJ, Zhang WB, Kong LB, et al. VO2: From Negative Electrode Material to Symmetric Electrochemical Capacitor[J]. RSC Advances, 2015, 5: 97 239-97 247.

[11]

Inagaki M, Konno H, Tanaike O. Carbon Materials for Electrochemical Capacitors[J]. Journal of Power Sources, 2010, 195: 7 880-7 903.

[12]

Kim H, Cho MY, Kim MH, et al. A Novel High-Energy Hybrid Supercapacitor With an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode[J]. Advanced Energy Materials, 2013, 3: 1 500-1 506.

[13]

Zhang K, Wang H, He X, et al. A Hybrid Material of Vanadium Nitride and Nitrogen-Doped Graphene for Lithium Storage[J]. Journal of Materials Chemistry, 2011, 21: 11 916-11 922.

[14]

Wang R, Yan X, Lang J, et al. A Hybrid Supercapacitor Based on Flower-Like Co(OH)2 and Urchin-Like VN Electrode Materials[J]. Journal of Materials Chemistry A, 2014, 2: 12 724-12 732.

[15]

Gao ZH, Zhang H, Cao GP, et al. Spherical Porous VN and Niox as Electrode Materials for Asymmetric Supercapacitor[J]. Electrochimica Acta, 2013, 87: 375-380.

[16]

Cui G, Gu L, Thomas A, et al. A Carbon/Titanium Vanadium Nitride Composite for Lithium Storage[J]. Chem. Phys. Chem., 2010, 11: 3 219-3 223.

[17]

Lu X, Yu M, Zhai T, et al. High Energy Density Asymmetric Quasi- Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode[J]. Nano Letters, 2013, 13: 2 628-2 633.

[18]

Xiao X, Peng X, Jin H, et al. Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All-Solid-State Supercapacitors[J]. Advanced Materials, 2013, 25: 5 091-5 097.

[19]

Ghimbeu CM, Raymundo-Piñero E, Fioux P, et al. Vanadium Nitride/ Carbon Nanotube Nanocomposites as Electrodes for Supercapacitors[J]. Journal of Materials Chemistry, 2011, 21: 13 268-13 275.

[20]

Achour A L-, Porto R, Chaker M, et al. Titanium Vanadium Nitride Electrode for Micro-Supercapacitors[J]. Electrochemistry Communications, 2017, 77: 40-43.

[21]

Lee HM, Jeong GH, Kim SW, et al. Low-Temperature Direct Synthesis of Mesoporous Vanadium Nitrides for Electrochemical Capacitors[J]. Applied Surface Science, 2017, 400: 194-199.

[22]

Bondarchuk O, Morel A, Bélanger D, et al. Thin Films of Pure Vanadium Nitride: Evidence for Anomalous Non-Faradaic Capacitance[J]. Journal of Power Sources, 2016, 324: 439-446.

[23]

Peng X, Li W, Wang L, et al. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode[J]. Electrochimica Acta, 2016, 214: 201-207.

[24]

Balogun MS, Qiu W, Jian J, et al. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries[J]. ACS Applied Materials & Interfaces, 2015, 7: 23 205-23 215.

[25]

Fechler N, Tiruye GA, Marcilla R, et al. Vanadium Nitride@ N-Doped Carbon Nanocomposites: Tuning of Pore Structure and Particle Size Through Salt Templating and Its Influence on Supercapacitance in Ionic Liquid Media[J]. RSC Advances, 2014, 4: 26 981-26 989.

[26]

Hu B, Kong LB, Kang L, et al. Synthesis of a Hierarchical Nanoporous Carbon Material with Controllable Pore Size and Effective Surface Area for High-Performance Electrochemical Capacitors[J]. RSC Advances, 2017, 7: 14 516-14 527.

[27]

Weng Z, Li F, Wang DW, et al. Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors[J]. Angewandte Chemie International Edition, 2013, 52: 3 722-3 725.

[28]

Khomenko V, Raymundo-Piñero E, Béguin F. High-Energy Density Graphite/AC Capacitor in Organic Electrolyte[J]. Journal of Power Sources, 2008, 177: 643-651.

[29]

Sun Q, Fu ZW. Vanadium Nitride as a Novel Thin Film Anode Material for Rechargeable Lithium Batteries[J]. Electrochimica Acta, 2008, 54: 403-409.

[30]

Kim HK, Mhamane D K, et al. TiO2-Reduced Graphene Oxide Nanocomposites by Microwave-Assisted Forced Hydrolysis as Excellent Insertion Anode for Li-Ion Battery and Capacitor[J]. Journal of Power Sources, 2016, 327: 171-177.

[31]

Kaliyappan K, Amaresh S, Lee YS. Limnbo3 Nanobeads as an Innovative Anode Material for High Power Lithium Ion Capacitor Applications[J]. ACS Applied Materials & Interfaces, 2014, 6: 11 357-11 367.

[32]

Karthikeyan K, Aravindan V, Lee SB, et al. Electrochemical Performance of Carbon-Coated Lithium Manganese Silicate for Asymmetric Hybrid Supercapacitors[J]. Journal of Power Sources, 2010, 195: 3 761-3 764.

[33]

Karthikeyan K, Aravindan V, Lee SB, et al. A Novel Asymmetric Hybrid Supercapacitor based on Li2FeSiO4 and Activated Carbon Electrodes[J]. Journal of Alloys and Compounds, 2010, 504: 224-227.

[34]

Wang YG, Xia YY. A New Concept Hybrid Electrochemical Surpercapacitor: Carbon/Limn2o4 Aqueous System[J]. Electrochemistry Communications, 2005, 7: 1 138-1 142.

[35]

Luo JY, Liu JL, He P, et al. A Novel LiTi2(PO4)3/MnO2 Hybrid Supercapacitor in Lithium Sulfate Aqueous Electrolyte[J]. Electrochimica Acta, 2008, 53: 8 128-8 133.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/