Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength

Jinpeng Liu , Xiaoqiang You , Nan Chen , Guoping Du

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1266 -1273.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1266 -1273. DOI: 10.1007/s11595-019-2188-6
Advanced Material

Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength

Author information +
History +
PDF

Abstract

BaTiO3/epoxy composites consisting of two three-dimensionally interpenetrating networks of BaTiO3 and epoxy phases were prepared using a new approach. The BaTiO3/epoxy composites exhibit a colossal dielectric constant, low dielectric loss and high flexural strength. In the BaTiO3 networks, chemically bonded grain boundaries between neighboring BaTiO3 grains were established, and they are responsible for the colossal dielectric constant and high flexural strength of the BaTiO3/epoxy composites. Furthermore, unlike the conventional ceramic/polymer composites, this approach also makes high loadings of BaTiO3 contents possible for the BaTiO3/epoxy composites without compromising their high flexural strength.

Keywords

ceramic/polymer composite / BaTiO3/epoxy / dielectric property / colossal dielectric constant

Cite this article

Download citation ▾
Jinpeng Liu, Xiaoqiang You, Nan Chen, Guoping Du. Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength. Journal of Wuhan University of Technology Materials Science Edition, 2020, 34(6): 1266-1273 DOI:10.1007/s11595-019-2188-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chem. Mater., 2013, 25(5

[2]

Kim P, Jones SC, Hotchkiss PJ, et al. Phosphonic Acid-modifed Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength[J]. Adv. Mater., 2007, 19(7): 1 001-1 005.

[3]

Kobayashi Y, Tanase T, Tabata T, et al. Fabrication and Dielectric Properties of the BaTiO3-polymer Nano-composite Thin Films[J]. J. Eu. Ceram. Soc., 2008, 28(1): 117-122.

[4]

Langhammer HT, Makovec D, Pu Y, et al. Grain Boundary Reoxidation of Donor-doped Barium Titanate Ceramics[J]. J. Eu. Ceram. Soc., 2006, 26(14): 2 899-2 907.

[5]

Desu SB, Payne DA. Interfacial Segregation in Perovskites: I V, Internal Boundary Layer Devices[J]. J. Am. Ceram. Soc., 1990, 73(11): 3 416-3 421.

[6]

Xu W, Ding Y, Jiang S, et al. Polyimide/BaTiO3/MWCNTs Three-phase Nanocomposites Fabricated by Electrospinning with Enhanced Dielectric Properties[J]. Mater. Lett., 2014, 135: 158-161.

[7]

Vriami D, Beaugnon E, Cool P, et al. Hydrothermally Synthesized Ba-TiO3 Textured in a Strong Magnetic Field[J]. Ceram. Int., 2015, 41(4): 5 397-5 402.

[8]

Subramanian MA, Li D, Duan N, et al. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases[J]. J. Solid State Chem., 2000, 151(2): 323-325.

[9]

Wang Y, Wu X, Feng C, et al. Improved Dielectric Properties of Surface Modifed BaTiO3/polyimide Composite Films[J]. Microelectron. Eng., 2016, 154: 17-21.

[10]

Luo B, Wang X Zhao Q, et al. Synthesis, Characterization and Dielectric Properties of Surface Functionalized Ferroelectric Ceramic/epoxy Resin Composites with High Dielectric Permittivity[J]. Compos. Sci. Technol., 2015, 112: 1-7.

[11]

Li Y, Yuan J, Xue J, et al. Towards Suppressing Loss Tangent: Effect of Polydopamine Coating Layers on Dielectric Properties of Core-shell Barium Titanate Filled Polyvinylidene Fluoride Composites[J]. Com pos. Sci. Technol., 2015, 118: 198-206.

[12]

Luo S, Shen Y, Yu S, et al. Construction of a 3D-BaTiO3 Network Leading to Signifcantly Enhanced Dielectric Permittivity and Energy Storage Density of Polymer Composites[J]. Energy Environ. Sci., 2017, 10: 137-144.

[13]

Yang W, Yu S, Sun R, et al. Effects of BaTiO3 and FeAlSi as Fillers on the Magnetic, Dielectric and Microwave Absorption Characteristics of the Epoxy-based Composites[J]. Ceram. Int., 2012, 38(5): 3 553-3 562.

[14]

Thomas P, Varughese K T, Dwarakanath K, et al. Dielectric Properties of Poly(vinylidene fuoride)/ CaCu3Ti4O12 Composites[J]. Compos. Sci. Technol., 2010, 70: 539-545.

[15]

You X, Chen N, Du G. Constructing Three-dimensionally Interwoven Structures for Ceramic/polymer Composites to Exhibit Colossal Dielectric Constant and High Mechanical Strength: CaCu3Ti4O12/epoxy as an Example[J]. Composites: Part A, 2018, 105: 214-222.

[16]

Chao X, Wu P, Zhao Y, et al. Effect of CaCu3Ti4O12 powders prepared by the different synthetic methods on dielectric properties of CaCu-3Ti4O12/polyvinylidene fluoride composite[J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 3 044-3 051.

[17]

Arbatti M, Shan X, Cheng ZY. Ceramic–polymer Composites with High Dielectric Constant[J]. Adv. Mater., 2007, 19(10): 1 369-1 372.

[18]

Mao YP, Mao YS, Ye ZG, et al. Size-dependences of the Dielectric and Ferroelectric Properties of BaTiO3/polyvinylidene Fluoride Nanocom-posites[J]. J. App. Phys., 2010, 108(1): 014 102

[19]

Choudhury A. Dielectric and Piezoelectric Properties of Polyether-imide/BaTiO3 Nanocomposites[J]. Mater. Chem. Phys., 2010, 121(1): 280-285.

[20]

Compos. Sci. Technol., 2008, 68(1

[21]

Prog. Mater. Sci., 2012, 57(4

[22]

Rao Y, Ogitani S, Kohl P, et al. Novel Polymer-ceramic Nanocompos-ite Based on High Dielectric Constant Epoxy Formula for Embedded Capacitor Application[J]. J. Appl. Polymer Sci., 2002, 83(5): 1 084-1 490.

[23]

Zhang L, Wu P, Li Y, et al. Preparation Process and Dielectric Properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) Nanocomposites[J]. Compos. Part B: Eng., 2014, 56: 284-289.

[24]

Lichtenecker K, Rother K. Die Herleitung des Logarithmischen Mis-chungsgesetz es aus Allgemeinen Prinzipien der Stationären Strömung. Physikalische Zeitschrift, 1931, 32(6): 255-260.

[25]

Yamada T, Ueda T, Kitayama T. Piezoelectricity of a High-content Lead Zirconate Titanate/Polymer Composite[J]. J. Appl. Phys., 1982, 53(6): 4 328-4 332.

[26]

Choy TC. Effective Medium Theory: Principles and Applications[M], 1999 Oxford, UK: Clarendon Press.

[27]

Cho SD, Lee S Y, Hyun JG, et al. Comparison of Theoretical Predictions and Experimental Values of the Dielectric Constant of Epoxy/ BaTiO3 Composite Embedded Capacitor Films[J]. J. Mater. Sci.: Mater Electron., 2005, 16(2): 77-84.

[28]

Ramajo L, Reboredo MAM, Castro MS. BaTiO3-epoxy Composites for Electronic Applications[J]. Int. J. Appl. Ceram. Technol., 2010, 7(4): 444-451.

[29]

Dang ZM, Yu YF, Xu HP. Study on Microstructure and Dielectric Property of the BaTiO3/Epoxy Resin Composites[J]. Compos. Sci. Technol., 2008, 68(1): 171-177.

[30]

Hull D. An Introduction to Composite Materials[M], 1981

[31]

Mackay ME, Tuteja A, Duxbury PM, et al. General Strategies for Nanoparticle Dispersion[J]. Science, 2006, 311(5768): 1 740-1 743.

[32]

Young AC, Omatete OO, Janney MA, et al. Gelcasting of Alumina[J]. J. Am. Ceram. Soc., 1991, 74(3): 612-618.

[33]

J. Am. Ceram. Soc., 2017, 100(2

[34]

Hu Y, Du G, Chen N. A Novel Approach for Al2O3/epoxy Composites with High Strength and Thermal Conductivity[J]. Compos. Sci. Technol., 2016, 124: 36-43.

[35]

Munro CD, Plucknett KP. Agar-based Aqueous Gel Casting of Barium Titanate Ceramics[J]. Int. J. Appl. Ceram. Technol., 2011, 8(3): 597-609.

[36]

Bai X. Dielectric Properties of BaTiO3/epoxy Composites by Lamination Process for Embedded Capacitor Application[J]. J. Mater. Sci.: Mater. Electron., 2016, 27(9): 8 996-9 001.

[37]

Falamaki C, Afarani MS, Aghaie A. Initial Sintering Stage Pore Growth Mechanism Applied to the Manufacture of Ceramic Membrane Supports[J]. J. Eu. Ceram. Soc., 2004, 24(8): 2 285-2 292.

[38]

Lunkenheimer P, Krohns S, Riegg S, et al. Colossal Dielectric Constants in Transition-metal Oxides[J]. Eur. Phys. J. Special Topics, 2009, 180(1): 61-89.

[39]

Fan BH, Zha JW, Wang DR, et al. Experimental Study and Theoretical Prediction of Dielectric Permittivity in BaTiO3/polyimide Nanocom-posite Films[J]. Appl. Phys. Lett., 2012, 100(9): 092 903

[40]

Kim DS, Baek C, Ma HJ, et al. Enhanced Dielectric Permittivity of BaTiO3/epoxy Resin Composites by Particle Alignment[J]. Ceram. Int., 2016, 42(6): 7 141-7 147.

[41]

Kuo DH, Chang CC, Su TY, Wang WK, et al. Dielectric Properties of Three Ceramic/Epoxy Composites[J]. Mater. Chem. Phys., 2004, 85(1): 201-206.

[42]

Luo H, Zhang D, Jiang C, et al. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoro-propylene) Nanocomposite with Hydantoin Epoxy Resin Coated Ba-TiO3[J]. ACS Appl. Mater. Interfaces, 2015, 7(15): 8 061-8 069.

[43]

Wu CC, Chen YC, Yang CF, et al. Dielectric Behavior of Epoxy/(Ba0.9Sr0.1)(Ti0.9Zr0.1)O3 Composites[J]. Ferroelectrics, 2009, 385(1): 675-681.

[44]

Appl. Phys. Lett., 2009, 95(6

[45]

Sun Y, Zhang Z, Wong CP. Infuence of Interphase and Moisture on the Dielectric Spectroscopy of Epoxy/silica Composites[J]. Polymer, 2005, 46(7): 2 297-2 305.

[46]

Adams TB, Sinclair DC, West AR. Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics[J]. Adv. Mater., 2002, 14(18): 1 321-1 323.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/