Formation of Copolymer-Ag Nanoparticles Composite Micelles in Three-dimensional Co-flow Focusing Microfluidic Device

Mengran Feng , Guangyao He , Si Yi , Weizheng Song , Yanjun Chen , Chaocan Zhang , Yifeng Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1259 -1265.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1259 -1265. DOI: 10.1007/s11595-019-2187-7
Advanced Material

Formation of Copolymer-Ag Nanoparticles Composite Micelles in Three-dimensional Co-flow Focusing Microfluidic Device

Author information +
History +
PDF

Abstract

A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles (NPs) in a three-dimensional co-flow focusing microfluidic device (3D CFMD). Self-assembly of the copolymers was initiated by the fast mixing of water and a blend dispersion of hydrophobic Ag NPs and amphiphilic copolymers. At the same time, the hydrophobic Ag NPs enter the core of copolymer micelles, based on the hydrophobic interaction. The copolymer-Ag NPs composite micelles have a core-shell structure with copolymer shell and Ag NPs core. COMSOL Multiphysics is used to simulate the concentration distribution of copolymers and Ag NPs under different flow rates. Co-assembly microfluidic conditions are determined based on simulation results. Under suitable microfluidic conditions, both block copolymers and gradient copolymers can co-assemble with hydrophobic Ag NPs to form composite micelles, respectively. This microfluidic coassembly method will have a good prospect in the preparation of composite micelles of amphiphilic copolymers and metal nanoparticles.

Keywords

composite micelles / self-assembly / co-flow microfluidic / simulation / amphiphilic copolymers / Ag nanoparticles

Cite this article

Download citation ▾
Mengran Feng, Guangyao He, Si Yi, Weizheng Song, Yanjun Chen, Chaocan Zhang, Yifeng Wang. Formation of Copolymer-Ag Nanoparticles Composite Micelles in Three-dimensional Co-flow Focusing Microfluidic Device. Journal of Wuhan University of Technology Materials Science Edition, 2020, 34(6): 1259-1265 DOI:10.1007/s11595-019-2187-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jo SH, Kim HW, Song M, et al. Core-Corona Functionalization of Diblock Copolymer Micelles by Heterogeneous Metal Nanoparticles for Dual Modality in Chemical Reactions[J]. Acs Appl. Mater. Inter., 2015, 7(33): 18 778-18 785.

[2]

Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive Polymernanoshell Composites for Photothermally Modulated Drug Delivery[J]. J. Biomed. Mater. Res., 2000, 51(3): 293-298.

[3]

Mahapure PD, Gangal SA, Aiyer RC, et al. Combination of Polymeric Substrates and Metal-polymer Nanocomposites for Optical Humidity Sensors[J]. J. Appl. Polym. Sci., 2019, 136(5): 47 035

[4]

Huang X, Xiao Y, Zhang W, et al. In-situ Formation of Silver Nanoparticles Stabilized by Amphiphilic Star-shaped Copolymer and Their Catalytic Application[J]. Appl. Surf. Sci., 2012, 258(7): 2 655-2 660.

[5]

Begum R, Naseem K, Ahmed E, et al. Simultaneous Catalytic Reduction of Nitroarenes Using Silver Nanoparticles Fabricated in Poly(N-isopropylacrylamide-acrylic acid-acrylamide) Microgels[J]. Colloid Surface A, 2016, 511: 17-26.

[6]

Rivière L, Lonjon A, Dantras E, et al. Silver Fillers Aspect Ratio Influence on Electrical and Thermal Conductivity in PEEK/Ag Nanocomposites[ J]. Eur. Polym. J., 2016, 85: 115-125.

[7]

Sahiner N, Demirci S. PEI-based Hydrogels with Different Morphology and Sizes: Bulkgel, Microgel, and Cryogel for Catalytic Energy and Environmental Catalytic Applications[J]. Eur. Polym. J., 2016, 76: 156-169.

[8]

Emam HE, Zahran MK, Ahmed HB. Generation of Biocompatible Nanogold Using H2O2-starch and Their Catalytic/Antimicrobial Activities[ J]. Eur. Polym. J., 2017, 90: 354-367.

[9]

Bleach R, Karagoz B, Prakash SM, et al. In Situ Formation of Polymergold Composite Nanoparticles with Tunable Morphologies[J]. Acs Macro Lett., 2014, 3(7): 591-596.

[10]

Hu J, Wu T, Zhang G, et al. Efficient Synthesis of Single Gold Nanoparticle Hybrid Amphiphilic Triblock Copolymers and Their Controlled Self-assembly[J]. J. Am. Chem. Soc., 2012, 134(18): 7 624-7 627.

[11]

Nash MA, Lai JJ, Hoffman AS, et al. “Smart” Diblock Copolymers as Templates for Magnetic-core Gold-shell Nanoparticle Synthesis[J]. Nano Lett., 2010, 10(1): 85-91.

[12]

Li Y, Smith AE, Lokitz BS, et al. In Situ Formation of Gold-“Decorated” Vesicles from a RAFT-synthesized, Thermally Responsive Block Copolymer[J]. Macromolecules, 2007, 40(24): 8 524-8 526.

[13]

Smith AE, Xu X, Abell TU, et al. Tuning Nanostructure Morphology and Gold Nanoparticle “Locking” of Multi-responsive Amphiphilic Diblock Copolymers[J]. Macromolecules, 2009, 42(8): 2 958-2 964.

[14]

Menezes WG, Zielasek V, Dzhardimalieva GI, et al. Synthesis of Stable AuAg Bimetallic Nanoparticles Encapsulated by Diblock Copolymer Micelles[J]. Nanoscale, 2012, 4(5): 1 658-1 664.

[15]

Jang S, Kim K, Jeon J, et al. Supracolloidal Chains of Patchy Micelles of Diblock Copolymers with in situ Synthesized Nanoparticles[J]. Soft Matter, 2017, 13: 6 756-6 760.

[16]

Kim MP, Kang DJ, Jung D, et al. Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures[J]. Acs Nano, 2012, 6(3): 2 750-2 757.

[17]

Kim B, Qiu J, Wang J, et al. Magnetomicelles: Composite Nanostructures from Magnetic Nanoparticles and Cross-linked Amphiphilic Block Copolymers[J]. Nano Lett., 2005, 5(10): 1 987-1 991.

[18]

Merican Z, Schiller TL, Hawker CJ, et al. Self-assembly and Encoding of Polymer-Stabilized Gold Nanoparticles with Surface-enhanced Raman Reporter Molecules[J]. Langmuir, 2007, 23(21): 10 539-10 545.

[19]

He J, Liu YJ, Babu T, et al. Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers[J]. J. Am. Chem. Soc., 2012, 134(28): 11 342-11 345.

[20]

Lu J, Yang Y, Gao J, et al. Thermoresponsive Amphiphilic Block Copolymer-Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties[J]. Langmuir, 2018, 34(28): 8 205-8 214.

[21]

He J, Wei Z, Wang L, et al. Hydrodynamically Driven Self-assembly of Giant Vesicles of Metal Nanoparticles for Remote-controlled Release[ J]. Angew. Chem. Int. Edit., 2013, 52(9): 2 463-2 468.

[22]

Karnik R, Gu F, Basto P, et al. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles[J]. Nano Lett., 2008, 8(9): 2 906-2 912.

[23]

Schabas G, Wang C, Oskooei A, et al. Formation and Shear-induced Processing of Quantum Dot Colloidal Assemblies in a Multiphase Microfluidic Chip[J]. Langmuir, 2008, 24(19): 10 596-10 603.

[24]

Wang C, Oskooei A, Sinton D, et al. Controlled Self-assembly of Quantum Dot-Block Copolymer Colloids in Multiphase Microfluidic Reactors[J]. Langmuir, 2010, 26(2): 716-723.

[25]

Schabas G, Yusuf H, Moffitt MG, et al. Controlled Self-assembly of Quantum Dots and Block Copolymers in a Microfluidic Device[J]. Langmuir, 2008, 24(3): 637-643.

[26]

Kennedy MJ, Ladouceur HD, Moeller T, et al. Analysis of a Laminar-flow Diffusional Mixer for Directed Self-assembly of Liposomes[ J]. Biomicrofluidics, 2012, 6(4): 44 119

[27]

Jiang L, Wang W, Chau Y, et al. Controllable Formation of Aromatic Nanoparticles in a Three-dimensional Hydrodynamic Flow Focusing Microfluidic Device[J]. RSC Adv., 2013, 3(39): 17 762-17 769.

[28]

He J, Wang L, Wei Z, et al. Vesicular Self-assembly of Colloidal Amphiphiles in Microfluidics[J]. ACS Appl. Mater. Inter., 2013, 5(19): 9 746-9 751.

[29]

Ferguson CJ, Hughes RJ, Nguyen D, et al. Ab Initio Emulsion Polymerization by RAFT-controlled Self-Assembly[J]. Macromolecules, 2005, 38(6): 2 191-2 204.

[30]

Zhu C, Yao R, Chen Y, et al. Self-assembly of Fluorinated Gradient Copolymer in Three-dimensional Co-flow Focusing Microfluidic[J]. J. Colloid Interf. Sci., 2018, 526: 75-82.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/