Silicone Chain Extender for Recycled Polyethylene-terephthalate with Higher Flexibility

Li Wang , Tonghui Hao , Long Huang , Ji Huang , Ronghua Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1228 -1232.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1228 -1232. DOI: 10.1007/s11595-019-2182-z
Organic Materials

Silicone Chain Extender for Recycled Polyethylene-terephthalate with Higher Flexibility

Author information +
History +
PDF

Abstract

To decrease the modulus and increase the mechanical properties of recycled PET by introducing the flexible segments, the recycled polyethylene-terephthalate (PET) was modified by the chain extender produced with 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra (2, 3-epoxypropoxy) propylcyclotetrasiloxane by the hydrosilylation reaction. Different percentages of chain extender were used in order to investigate the effect of chain extender content on the modulus of PET. The dynamic mechanical analysis was performed on PET samples, which showed that T g of PET was firstly raised by the addition of chain extender and then decreased. Small amplitude shearing test performed on PET samples confirmed that the addition of the flexible segments could remarkably decrease the modulus of PET, which would be helpful for the extrusion process. The entanglements from branches were also influenced by the addition of extender.

Keywords

PET / chain extender / silicone / fexibility / branches

Cite this article

Download citation ▾
Li Wang, Tonghui Hao, Long Huang, Ji Huang, Ronghua Huang. Silicone Chain Extender for Recycled Polyethylene-terephthalate with Higher Flexibility. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1228-1232 DOI:10.1007/s11595-019-2182-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niculae D, Plaisanu C, Bistriceanu D. Mass Spectrometry Investigation of the Degradation of Polyethylene Terephtalate Induced by Low-energy (<100 eV) Electrons[J]. Radiat. Phys. Chem., 2008, 77(7): 889-897.

[2]

Raffa P, Coltelli M B, Savi S, et al. Chain Extension and Branching of Poly(ethylene terephthalate) (PET) with di-and Multifunctional Epoxy or Isocyanate Additives: An Experimental and Modelling Study[J]. React. Funct. Polym., 2012, 72(1): 50-60.

[3]

Aslan S, Immirzi B, Laurienzo P, et al. Unsaturated Polyester Resins from Glycolysed Waste Polyethyleneterephthalate: Synthesis and Comparison of Properties and Performance with Virgin Resin[J]. J. Mater. Sci., 1997, 32(9): 2 329-2 336.

[4]

Westerhoff P, Prapaipong P, Shock E, et al. Antimony Leaching from Polyethylene Terephthalate (PET) Plastic Used for Bottled Drinking Water[J]. Water Res., 2008, 42(3): 551-556.

[5]

Manju Roy P K, Ramanan A, et al. Post Consumer PET Waste as Potential Feedstock for Metal Organic Frameworks[J]. Mater. Lett., 2013, 106(9): 390-392.

[6]

Chilton T, Burnley S, Nesaratnam S. A Life Cycle Assessment of the Closed-loop Recycling and Thermal Recovery of Post-consumer PET[J]. Resour. Conserv. Recy., 2010, 54(12): 1 241-1 249.

[7]

Ghanbari A, Heuzey M C, Carreau P J, et al. A Novel Approach to Control Thermal Degradation of PET/organoclay Nanocomposites and Improve Clay Exfoliation[J]. Polymer, 2013, 54(4): 1 361-1 369.

[8]

Shen L, Worrell E, Patel M K. Open-loop Recycling: a LCA Case Study of PET Bottle-to-fibre Recycling.[J]. Resour. Conserv. Recy., 2011, 55(1): 34-52.

[9]

Kuczenski B, Geyer R. Material Flow Analysis of Polyethylene Terephthalate in the US, 1996–2007 [J]. Resour. Conserv. Recy., 2010, 54(12): 1 161-1 169.

[10]

Vaidya U R, Nadkarni V M. Polyester Polyols for Polyurethanes from Pet Waste: Kinetics of Polycondensation[J]. J. Appl. Polym. Sci., 1988, 35(3): 775-785.

[11]

N G G Rosenbaum S. Intrinsic Viscosity and Molecular Weight of Polyethylene Terephthalate[J]. J. Polym. Sci. Pol. Chem., 1959, 39(135): 545-547.

[12]

Incarnato L, Scarfato P, Maio L D, et al. Structure and Rheology of Recycled PET Modifed by Reactive Extrusion[J]. Polymer, 2000, 41(18): 6 825-6 831.

[13]

Tavares A A, Silva D F A, Lima P S, et al. Chain Extension of Virgin and Recycled Polyethylene Terephthalate[J]. Polym. Test, 2016, 50: 26-32.

[14]

Quirk J M, Kanner B. Process for Producing Epoxyorganoalkoxysilanes, 1989

[15]

Dealy J M, Larson R G. Structure and Rheology of Molten Polymers, 2006 Munich: Hanser.

[16]

Jamdar V, Kathalewar M, Dubey K A, et al. Recycling of PET Wastes Using Electron Beam Radiations and Preparation of Polyurethane Coatings Using Recycled Material[J]. Prog. Org. Coat, 2017, 54: 54-63.

[17]

And H K, Urban M W. Reaction Sites on Poly(dimethylsiloxane) Elastomer Surfaces in Microwave Plasma Reactions with Gaseous Imidazole: A Spectroscopic Study[J]. Langmuir, 2010, 12(4): 1 047-1 050.

[18]

Borsacchi S, Geppi M, Ricci L, et al. Interactions at the Surface of Organophilic-modified Laponites: a Multinuclear Solid-state NMR Study[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2007, 23(7): 3 953

[19]

Lu G, Mehr M Y, Driel W D V, et al. Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA[J]. Opt. Mater., 2015, 45: 37-41.

[20]

Lu G, Driel W D V, Fan X, et al. Degradation of Microcellular PET Reflective Materials Used in LED-based Products[J]. Opt. Mater., 2015, 49: 79-84.

[21]

Gupta S, Dixit M, Sharma K, et al. Mechanical Study of Metallized Polyethylene Terephthalate (PET) Films[J]. Surf. Coat. Tech., 2009, 204(5): 661-666.

[22]

Takahashi S, Yoshida M, Asano M, et al. Characterizations of Heavy Ion Irradiated PET Membranes[J]. Nucl. Instrum. Meth. B, 2004, 217(3): 435-441.

[23]

Hyun K, Wilhelm M, Klein C O, et al. A Review of Nonlinear Oscillatory Shear Tests: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS)[J]. Prog. Polym. Sci., 2011, 36(12): 1 697-1 753.

[24]

Lou L J, Liu J Y, Wei Y U, et al. Rheological Characterization of Long Chain Branching[J]. Polym. Bull., 2009, 29(10): 15-23.

[25]

Peirotti M B, Deiber J A, Ressia J A, et al. Relaxation Modes of Molten Polydimethylsiloxane[J]. Rheol. Acta, 1998, 37(5): 449-462.

[26]

Deiber J A, Peirotti M B, Villar M A, et al. Linear Viscoelastic Relaxation Modulus of Polydisperse Poly(dimethylsiloxane) Melts Containing Unentangled Chains[J]. Polymer, 2002, 43(10): 3 035-3 045.

[27]

Nait-Ali K L, Bergeret A, Ferry L, et al. Chain Branching Detection by Cole-Cole Modeling of Rheological Properties Changes during PET Mechanical Recycling[J]. Polym. Test, 2012, 31(3): 500-504.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/