5H-Fluoreno [3,2- b:6,7- b’] Dithiophene Based Non-fullerene Small Molecular Acceptors for Polymer Solar Cell Application

Jiansheng Wu , Wei Wang , Chun Zhan , Shengqiang Xiao

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1220 -1227.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1220 -1227. DOI: 10.1007/s11595-019-2181-0
Organic Materials

5H-Fluoreno [3,2- b:6,7- b’] Dithiophene Based Non-fullerene Small Molecular Acceptors for Polymer Solar Cell Application

Author information +
History +
PDF

Abstract

Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5H-fluoreno[3, 2- b:6, 7- b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone (DICTFDT) and rhodanine (TFDTBR), respectively. The two acceptors exhibited excellent thermal stability and strong absorption in the visible region. The LUMO level is estimated to be at -3.89 eV for DICTFDT and -3.77 eV for TFDTBR. When utilized as the acceptor in bulk heterojunction polymer solar cells with the polymer donor of PBT7-Th, the optimized maximum power conversion efficiency of 5.12% and 3.95% was obtained for the device with DICTFDT and TFDTBR, respectively. The research demonstrates that 5H-fluoreno[3, 2- b:6, 7- b’] dithiophene can be an appealing candidate for constructing small molecular electron acceptor towards efficient polymer:non-fullerene bulk heterojunction solar cells.

Keywords

polymer solar cells / bulk heterojunction / non-fullerene acceptor

Cite this article

Download citation ▾
Jiansheng Wu, Wei Wang, Chun Zhan, Shengqiang Xiao. 5H-Fluoreno [3,2- b:6,7- b’] Dithiophene Based Non-fullerene Small Molecular Acceptors for Polymer Solar Cell Application. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1220-1227 DOI:10.1007/s11595-019-2181-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Cao Y. Development of Novel Conjugated Donor Polymers for High-Effciency Bulk-Heterojunction Photovoltaic Devices[J]. Acc. Chem. Res, 2009, 42(11): 1709-1718.

[2]

Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem. Rev, 2009, 109(11): 5868-5923.

[3]

Li G, Zhu R, Yang Y. Polymer Solar Cells[J]. Nat. Photon, 2012, 6(3): 153-161.

[4]

Dou L, You J, Hong Z, et al. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research[J]. Adv. Mate, 2013, 25(46): 6642-6671.

[5]

Li Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorp-tion[J]. Acc. Chem. Res, 2012, 45(5): 723-733.

[6]

Xiao S, Zhang Q, You W. Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report[J]. Adv. Mater, 2017, 29(20): 1 601 391

[7]

Liu T, Troisi A. What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them[J]. Adv. Mater, 2013, 25(7): 1038-1041.

[8]

He Y, Li Y. Fullerene Derivative Acceptors for High Performance Polymer Solar Cells[J]. Phys. Chem. Chem. Phys, 2011, 13(6): 1970-1983.

[9]

Zhao J, Li Y, Yang G, et al. Efficient Organic Solar Cells Processed from Hydrocarbon Solvents[J]. Nat. Energ, 2016, 1: 15027.

[10]

Lin Y, Li Y, Zhan X. Small Molecule Semiconductors for High-eff-ciency Organic Photovoltaics[J]. Chem. Soc. Rev, 2012, 41(11): 4245-4272.

[11]

Anthony J E. Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics[J]. Chem. Mater., 2011, 23(3): 583-590.

[12]

Lin Y, Wang J, Zhang Z-G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Adv. Mater, 2015, 27(7): 1170-1174.

[13]

Lin Y, He Q, Zhao F. A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Effciency[J]. J. Am. Chem. Soc, 2016, 138(9): 2973-2976.

[14]

Lin Y, Zhao F, Wu Y. Mapping Polymer Donors toward High-Effcien-cy Fullerene Free Organic Solar Cells[J]. Adv. Mater, 2017, 29(3): 1 604 155

[15]

Cheng P, Zhang M, Lau T-K, et al. Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage >1 V and High Efficiency >10% in Fullerene-Free Polymer Solar Cells via Energy Driver[J]. Adv. Mater, 2017, 29(11): 1 605 216

[16]

Bin H, Zhang Z-G, Gao L, et al. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Effciency[J]. J. Am. Chem. Soc, 2016, 138(13): 4657-4664.

[17]

Yang Y, Zhang Z-G, Bin H, et al. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Effciency Polymer Solar Cells[J]. J. Am. Chem. Soc, 2016, 138(45): 15011-15018.

[18]

Yao H, Chen Y, Qin Y, et al. Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells[J]. Adv. Mater, 2016, 28(37): 8283-8287.

[19]

Baran D, Ashraf R S, Hanif D A, et al. Reducing the Effciency-stabil-ity-cost Gap of Organic Photovoltaics with highly Effcient and Stable Small Molecule Acceptor Ternary Solar Cells[J]. Nat. Mater, 2017, 16(3): 363-369.

[20]

Zhao W, Qian D, Zhang S, et al. Fullerene-Free Polymer Solar Cells with over 11% Effciency and Excellent Thermal Stability[J]. Adv. Mater, 2016, 28(23): 4734-4739.

[21]

Li S, Ye L, Zhao W, et al. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Effciency in Polymer Solar Cells[J]. Adv. Mater, 2016, 28(42): 9423-9429.

[22]

Liu T, Guo Y, Yi Y, et al. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Effciency >10%[J]. Adv. Mater, 2016, 28(45): 10008-10015.

[23]

Zhao W, Li S, Yao H, et al. Molecular Optimization Enables over 13% Effciency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.

[24]

Holliday S, Ashraf R S, Nielsen C B, et al. A Rhodanine Flanked Non-fullerene Acceptor for Solution-Processed Organic Photovoltaics[J]. J. Am. Chem. Soc, 2015, 137(2): 898-904.

[25]

Gao J, Wang W, Zhang S, et al. Distinction between PTB7-Th Samples Prepared from Pd(PPh3)4 and Pd2(dba)3/P(o-tol)3 Catalysed Stille Coupling Polymerization and the Resultant Photovoltaic Performance[J]. J. Mater. Chem. A, 2018, 6(1): 179-188.

[26]

Yang M, Lau T-K, Xiao S, et al. A Ladder-type Heteroheptacene 12H-Dithieno[2’,3’:4,5]thieno[3,2-b:2’,3’-h]fuorene Based D-A Co-polymer with Strong Intermolecular Interactions toward Effcient Polymer Solar Cells[J]. ACS Appl. Mater. Interfaces, 2017, 9(40): 35159-35168.

[27]

Lin Y, Zhang Z-G, Bai H, et al. High-performance Fullerene-free Polymer Solar Cells with 6.31% Effciency[J]. Energy Environ. Sci, 2015, 8(2): 610-616.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/