Laser Cladding Fe-Al-Cr Coating with Enhanced Mechanical Properties

Xixi Luo , Zhengjun Yao , Pingze Zhang , Dongdong Gu , Yu Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1197 -1204.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1197 -1204. DOI: 10.1007/s11595-019-2178-8
Metallic Materials

Laser Cladding Fe-Al-Cr Coating with Enhanced Mechanical Properties

Author information +
History +
PDF

Abstract

Dense Fe-Al-Cr coatings with approximately 50 μm in thickness are successfully prepared on the 1045 carbon steel substrates via a laser cladding process. Proper Cr content (5 at% Cr) will lead to decrease in the melting point, and improves the viscosity of the liquid and the nucleation rate of the molten pool, leading to refining grains of the solidification structure. As a result, the Fe-29Al-5Cr laser cladding layer exhibits the best hardness, plasticity properties, and wear resistance at 400 °C. Excessive Cr for the Fe-29Al-7.5Cr coating leads to the formation of Cr2Al in the grain boundaries and thermal vacancies during the solidification process, resulting in inferior mechanical properties and poor tribological behavior.

Keywords

Fe-Al-Cr / intermetallic alloys and compounds / laser processing / mechanical properties / nanoindentation

Cite this article

Download citation ▾
Xixi Luo, Zhengjun Yao, Pingze Zhang, Dongdong Gu, Yu Chen. Laser Cladding Fe-Al-Cr Coating with Enhanced Mechanical Properties. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1197-1204 DOI:10.1007/s11595-019-2178-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen SJ, Chen Y, Li S, et al. Bulk Synthesis of Fe3Al Intermetallic Compound Nanoparticles by Flow-Levitation Method[J]. Nano, 2015, 10(01): 1 550 002

[2]

Farrokhi A, Samadi A A, Asadabad M, et al. Characterization of Mechanically Alloyed Nano Structured Fe3Al Intermetallic Compound by X-ray Diffractometry[J]. Adv. Powder Technol., 2015, 26(3): 797-801.

[3]

Le XW, Ji D, Zhong QD, et al. The Infuence of Prepared Methods on Electrochemical Corrosion Behavior of Fe3Al Intermetallic[J]. Adv. Mater. Res., 2014, 1033-1034: 1 258-1 262.

[4]

Łyszkowski R, Czujko T, Varin RA. Multi-Axial Forging of Fe-3Al-Base Intermetallic Alloy and Its Mechanical Properties[J]. J. Mater. Sci., 2017, 52(5): 2 902-2 914.

[5]

Enayati MH, Salehi M. Formation Mechanism of Fe3Al and FeAl Intermetallic Compounds During Mechanical Alloying[J]. J. Mater. Sci., 2005, 40(15): 3 933-3 938.

[6]

Luo X, Yao Z, Zhang P, et al. Tribological Behavior of Al-Cr Coating Obtained by DGPSM and IIP Composite Technology[J]. Surf. Rev. Lett., 2017, 24(7): 1 750 091

[7]

Amiriyan M, Blais C, Savoie S, et al. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications[J]. Materials, 2016, 9(2): 117

[8]

Mohammadkhani S, Jajarmi E, Nasiri H, et al. Applying FeAl Coating on the Low Carbon Steel Substrate Through Self-Propagation High Temperature Synthesis (SHS) Process[J]. Surf. Coat. Technol., 2016, 286: 383-387.

[9]

Goto T A R. Structural Oxide Coatings by Laser Chemical Vapor Deposition[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(1): 1-5.

[10]

Zamanzade M, Vehoff H, Barnoush A. Cr Effect on Hydrogen Embrittlement of Fe3Al-Based Iron Aluminide Intermetallics: Surface or Bulk Effect[J]. Acta Mater., 2014, 69: 210-223.

[11]

Mao TC, Chen JC, Hu CC. Effect of the Pulling Rate on the Quality of Cerium-Substituted YIG Single-Crystal Fibers by LHPG[J]. J. Cryst. Growth, 2006, 296(1): 110-116.

[12]

Yao C, Xu B, Zhang X, et al. Interface Microstructure and Mechanical Properties of Laser Welding Copper–Steel Dissimilar Joint[J]. Opt. Lasers Eng., 2009, 47(7-8): 807-814.

[13]

Yao C, Huang J, Zhang P, et al. Toughening of Fe-Based Laser-Clad Alloy Coating[J]. Appl. Surf. Sci., 2011, 257(6): 2 184-2 192.

[14]

Li JN, Gong SL, Liu H, et al. Physical Properties and Microstructures of Fe3Al Matrix Laser Amorphous–Nanocrystals Reinforced Coating[J]. Mater. Lett., 2013, 92: 235-238.

[15]

Hadef F. Solid-State Reactions During Mechanical Alloying of Ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) Systems: A Review[J]. J. Magn. Magn. Mater., 2016, 419: 105-118.

[16]

Kan Q, Yan W, Kang G, et al. Oliver–Pharr Indentation Method in Determining Elastic Moduli of Shape Memory Alloys—A Phase Transformable Material[J]. J. Mech. Phys. Solids, 2013, 61(10): 2 015-2 033.

[17]

Niu X, Wang Lj. Effect of Transition-Metal Substitution on Electronic and Mechanical Properties of Fe3Al: First-Principles Calculations[J]. Comput. Mater. Sci., 2012, 53(1): 128-132.

[18]

Chen Y, Yao ZJ, Zhang PZ, et al. First-Principles Study on Effects of Cr, Mo and W on the Electronic Structure and Mechanical Properties of FeAl Intermetallic Compounds[J]. Rare Met. Mater. Eng., 2014, 43(9): 2 112-2 117.

[19]

Ortega Y, de Diego N, Plazaola F, et al. Infuence of Cr Addition on the Defect Structure of Fe–Al Alloys[J]. Intermetallics, 2007, 15(2): 177-180.

[20]

Chen Y, Yao ZJ, Zhang PZ, et al. Effect of Alloying Elements V, Cr and Ni on the Electronic Structure and Mechanical Properties of FeAl from First-Principles Calculation[J]. Adv. Mater. Res., 2014, 887-888: 378-383.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/