Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing

Sifeng Liu , Siyu Yang , Yaning Kong , Tingting Wan , Guorong Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1109 -1118.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1109 -1118. DOI: 10.1007/s11595-019-2167-y
Cementitious Materials

Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing

Author information +
History +
PDF

Abstract

In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer (EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiber-reinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.

Keywords

anti-cracking property / EVA-modified polypropylene fiber-reinforced concrete / thermal-cooling cycling curing

Cite this article

Download citation ▾
Sifeng Liu, Siyu Yang, Yaning Kong, Tingting Wan, Guorong Zhao. Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1109-1118 DOI:10.1007/s11595-019-2167-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mahamud M M. Durability and Thermal Incompatibility of Concrete Constituents Made from Local Materials in the Arabian Gulf Countries[D], 1988 King Fahd: King Fahd University of Petroleum and Minerals.

[2]

Zhang X, Feng H. Study on the Application of Steel Fiber Reinforced Concrete in Bridge Reinforcement and Maintenance[J]. Shanxi Archetect., 2007, 33(31): 329-331.

[3]

Al-Mandil M Y, Baluch M H, Azad A K, et al. Categorization of Damage to Concrete Bridge Decks in Saudi Arabia[J]. J. Perform. Constr. Facil., 1990, 4(2): 100-110.

[4]

Rasheeduzzafar S M A A-Kurdi. Effect of Hot Weather Conditions on the Micro cracking and Corrosion Cracking Potential of Reinforced Concrete[J]. ACI Spe. Publ., 1993, 139: 1-20.

[5]

Bao Y W, Huang P F, Yao Y, et al. Thermal Stress Analysis of Reinforced Concrete[J]. Eng. Meck., 2006, 23(4): 93-98.

[6]

Bairagi N K, Dubai N S. Effects of Thermal Cycles on Concrete[J]. Int. J. Struct., 1996, 16: 23-37.

[7]

Liu S, Kong Y, Wan T, et al. Effects of Thermal-cooling Cycling Curing on the Mechanical Properties of EVA-modified Concrete[J]. Constr. Build. Mater., 2018, 165: 443-450.

[8]

Al-Tayyib A J, Baluch M H, Sharif A F M, et al. The Effect of Thermal Cycling on the Durability of Concrete Made from Local Materials in the Arabian Gulf Countries [J]. Cem. Concr. Res., 1990, 19(1): 131-142.

[9]

She A, Shui Z, Wang S. Study on Interfacial Transition Zone of Concrete in Dry Climate and Wide Temperature Change[J]. J. Build. Mater., 2008, 11(4): 485-488.

[10]

Xu G, Li Z, Bi F, et al. Research on the Pore Structure of Concrete in Dry Climate and Big Temperature Change[J]. J. Wuhan Univ. of Tech., 2007, 29(9): 101-103.

[11]

Taheri A. Durability of Marine Concrete under Thermal Cycling Loads[D], 1998 Delft: Delft University of Technology.

[12]

Venecanin S D. Influence of Thermal Incompatibility of Concrete Components on Durability[C]. International Association for Bridge and Structural Engineering, 1986

[13]

Sumarac D, Krasulja M. Damage of Plain Concrete due to Thermal Incompatibility of Its Phases[J]. Int. J. Damage Meck., 1998, 7(2): 129-142.

[14]

Baluch M H, Al-Nour L A R, Azad A K, et al. Concrete Degradation due to Thermal Incompatibility of Its Components[J]. J. Mater. Civ. Eng., 1989, 1(3): 105-118.

[15]

Schutter G D, Matthys S, Taerwe L. Two-dimensional Finite Element Analysis of Thermal Incompatibility between FRP Reinforcement and Concrete[C]. T International DIANA Conference on Finite Elements in Engineering and Science - Computational Mechanics, 1997

[16]

Chi Y. Experimental Study and Theoretical Analysis of Anti Cracking Performance of Concrete Containing Mineral Admixtures[D], 2006 Zhejiang: Zhejiang University.

[17]

Wagner H B. Polymer-modified Hydraulic Cements[J]. Industr. Eng. Chem. Prod. Res. Dev., 1965, 4(3): 191-196.

[18]

Silva D A, Roman H R, Gleize P J P. Evidences of Chemical Interaction between EVA and Hydrating Portland Cement[J]. Cem. Concr. Res., 2002, 32(9): 1383-1390.

[19]

Bentur A, Diamond S, Mindess S. Cracking Processes in Steel Fiber Reinforced Cement Paste[J]. Cem. Concr. Res., 1985, 15(2): 331-342.

[20]

Gray R. Analysis of the Effect of Embedded Fibre Length on Fibre Debonding and Pull-out from an Elastic Matrix[J]. J. Mater. Sci., 1984, 19(3): 861-870.

[21]

Pinchin D, Tabor D. Interfacial Contact Pressure and Frictional Stress Transfer in Steel Fibre Cement[C]. Testing and Test Methods of Fibre Cement Composites, 1987

[22]

Han H U. Experimental Research on Fatigue Performance of Steel Fiber Reinforced Polymer High-strength Concrete[J]. Sci. Tech. Eng., 2010, 45(45): 34-38.

[23]

Liu Y P, Huang X Q, Tang L Q, et al. Experimental Study on Impact Behaviors of a New Kind of Pavement Material for Concrete Bridge Deck[J]. Explos. Shock Wav., 2007, 27(3): 217-222.

[24]

Dayang S. Investigation on the Properties of Acrylice Emulsion Polymer Based Ordinary Portaland Cement Concrete Reinforced with Hooked Steel Fiber[D], 2015 Pahang: Universiti Malaysia Pahang.

[25]

Song P S, Wu J C, Hwang S, et al. Statistical Analysis of Impact Strength and Strength Reliability of Steel-polypropylene Hybrid Fiber-reinforced Concrete[J]. Constr. Build. Mate., 2005, 19(1): 1-9.

[26]

Wu S P, Nan C W. Micro structure of Steel Fiber Reinforced Polymer-cement-based Composites[J]. J. Wuhan Univ. of Tech.-Mater. Sci. Ed, 2002, 17(1): 47-49.

[27]

China ArchitectureBuilding Press. Code for Design of Concrete[S], 2010

[28]

Xingwen L, Qingxuan S. Design Theory for Concrete Structure[M], 2008 Beijing: China Architecture & Building Press.

[29]

Liu S H, Fang K H, Zeng L, et al. Summarization of Norm of Crack Resistance of Concrete[J]. Concr., 2004 32-33.

[30]

Neville A M. Properties of Concrete[M], 1973 New York: Wiley.

[31]

Walker S, Bloem D L, Mullen W G. Effects of Temperature Changes on Concrete as Influenced by Aggregates[C]. ACI Journal Proceedings, 1952 661-679.

[32]

Rui Z. Studies on Thermal Expansion Properties and Thermal Fatigue of Cement-based Materials[D], 2010 Wuhan: Wuhan University of Technology.

[33]

Yang H-S W, M P K, et al. Thermal Properties of Lignocel-lulosic Filler-thermoplastic Polymer Biocomposites[J]. Journal of Thermal Analysis and Colorimetry, 2005, 82(1): 157-160.

[34]

Schapery R A. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles[J]. Journal of Composite Materials, 1968, 2(3): 380-404.

[35]

Ohama Y. Polymer-based Admixtures[J]. Cem. Concr. Compos., 1998, 20(2): 189-212.

[36]

Janotka I, Madejová J, Števula L, et al. Behaviour of Ca(OH)2 in the Presence of the Set Styrene-acrylate Dispersion[J]. Cem. Concr. Res., 1996, 26(11): 1727-1735.

[37]

Knapen E, Gemert D V. Cement Hydration and Microstructure Formation in the Presence of Water-soluble Polymers[J]. Cem. Concr. Res., 2009, 39(1): 6-13.

[38]

Kim J H, Robertson R E. Prevention of Air Void Formation in Polymer-modified Cement Mortar by Prewetting[J]. Cem. Concr. Res., 1997, 27(2): 171-176.

[39]

Hwang E H, Ko Y S, Jeon J K. Effect of Polymer Cement Modifiers on Mechanical and Physical Properties of Polymer-modified Mortar Using Recycled Artificial Marble Waste Fine Aggregate[J]. J. Industrial Eng. Chem., 2008, 14(2): 265-271.

[40]

Feng L L, Zhou J C, Yan H P. Reinforced Mechanism with the Polymer Latex Added in the Steel Fiber Reinforced Concrete[J]. Acta Mater. Compos. Sinica, 2002, 19(3): 46-50.

[41]

Ramli M, Tabassi A A. Mechanical Behaviour of Polymer-Modified Ferrocement under Different Exposure Conditions: an Experimental Study[J]. Compo. Part B-Eng., 2012, 43(2): 447-456.

[42]

Georgescu M, Puri A, Coarna M, et al. Thermoanalytical and Infrared Spectroscopy Investigations of Some Mineral Pastes Containing Organic Polymers[J]. Cem. Concr. Res., 2002, 32(8): 1269-1275.

[43]

Silva D A, Monteiro P J M. Hydration Evolution of C3S-EVA Composite Analyzed by Soft X-rays Microscopy[J]. Cem. Concr. Res., 2005, 35(2): 351-357.

[44]

Silva D A, Monteiro P J M. Analysis of C3A Hydration Using Soft X-rays Transmission Microscopy: Effect of EVA Copolymer[J]. Cem. Concr. Res., 2005, 35(10): 2026-2032.

[45]

Betioli A M, Filho J H, Cincotto M A, et al. Chemical Interaction between EVA and Portland Cement Hydration at Earlyage[J]. Constr. Build. Mater., 2009, 23(11): 3332-3336.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/