Preparation of Cordierite-mullite Ceramics for Solar Thermal Storage

Jianfeng Wu , Chenglong Lu , Xiaohong Xu , Yinfeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1062 -1070.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1062 -1070. DOI: 10.1007/s11595-019-2160-5
Advanced Materials

Preparation of Cordierite-mullite Ceramics for Solar Thermal Storage

Author information +
History +
PDF

Abstract

We developed cordierite-mullite composite ceramic materials to package and encapsulate PCM, and presented a preparation process from raw materials of kaolin, talc and alumina. The properties and microstructre of cordierite-mullite composite ceramic were studied. Due to the strengthening effects of mullite, the sample C2 (80 wt% of cordierite and 20 wt % of mullite) sintered at 1 420 °C possessed excellent physical properties. Determined by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) analysis, cuboid-shaped cordierite crystals and needle-like or long quadrilateral-prism mullite crystals with staggered patterns were found, which endowed the composites preferable mechanical strength. After 30 cycles of thermal shock (room temperature to about 1 100 °C, air-cooled), the sample presented superior thermal shock resistance, which is suitable to be applied as solar thermal storage materials.

Keywords

solar energy / cordierite-mullite composite ceramics / properties and microstructure

Cite this article

Download citation ▾
Jianfeng Wu, Chenglong Lu, Xiaohong Xu, Yinfeng Zhang. Preparation of Cordierite-mullite Ceramics for Solar Thermal Storage. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1062-1070 DOI:10.1007/s11595-019-2160-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed S F, Khalid M, Rashmi W, et al. Recent Progress in Solar Thermal Energy Storage Using Nanomaterials[J]. Renew. Sust. Energ. Rev., 2017, 67: 450-460.

[2]

Zhao Z, Arif M T, Oo A M T. Solar Thermal Energy with Molten-Salt Storage for Residential Heating Application[J]. Energ. Proced., 2017, 110: 243-249.

[3]

Xu X, Zhang Y, Wu J, et al. Preparation and Performance Study of Cordierite/Mullite Composite Ceramics for Solar Thermal Energy Storage[J]. Int. J. Appl. Ceram. Tec., 2017, 14(2): 162-172.

[4]

Nkhonjera L, Bello-Ochende T, John G, et al. A Review of Thermal Energy Storage Designs, Heat Storage Materials and Cooking Performance of Solar Cookers with Heat Storage[J]. Renew. Sust. Energ. Rev., 2016, 75: 157-167.

[5]

Wu J, Leng G, Xu X, et al. In-Situ Synthesis of a Cordierite-Andalusite Composite for Solar Thermal Storage[J]. Sol. Energ. Mat. Sol. C, 2013, 108(1): 9-16.

[6]

Cabeza L F, Sole C, Castell A, et al. Review of Solar Thermal Storage Techniques and Associated Heat Transfer Technologies[J]. P. IEEE, 2012, 1002: 525-538..

[7]

Wu J, Lu C, Xu X, et al. Cordierite Ceramics Prepared from Poor Quality Kaolin for Electric Heater Supports: Sintering Process, Phase Transformation, Microstructure Evolution and Properties[J]. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2018, 33(3): 598-607.

[8]

Xu X, Ma X, Wu J, et al. In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power[J]. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2013, 283: 407-412.

[9]

Xu X, Li J, Wu J, et al. Study of SiC-Kaolinite Composite Ceramic Used for Solar Energy Storage[J]. J. Ceram., 2010, 312: 176-179.

[10]

Wu J, Fang B, Xu X, et al. Preparation and Characterization of Alumina- Silicon Carbide-Zirconia Thermal Storage Ceramics for Solar Thermal Power Generation[J]. J. Chi. Ceram. Soc., 2013, 418: 1 063-1 069.

[11]

Wu J, Fang B, Xu X, et al. Study on Thermal Shock Resistance of Al2O3-ZrO2 Thermal Storage Ceramics for Solar Thermal Power Generation[J]. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2013, 351: 7-12.

[12]

Petrovic R, Janackovic D, Zec S, et al. Crystallization Behavior of Alkoxy-Derived Cordierite Gels[J]. J. Sol-Gel Sci. Technol., 2003, 28(1): 111-118.

[13]

Albhilil A A, Kozánková J, Palou J. Thermal and Microstructure Stability of Cordierite–Mullite Ceramics Prepared from Natural Raw Materials[J]. Arab. J. Sci. Eng., 2014, 39(1): 67-73.

[14]

Camerucci M A, Urretavizcaya G, Cavalieri A L. Mechanical Behavior of Cordierite and Cordierite–Mullite Materials Evaluated by Indentation Techniques[J]. J. Eur. Ceram. Soc., 2001, 21(9): 1 195-1 204.

[15]

Camerucci M A, Urretavizcaya G, Cavalieri A L. Sintering of Cordierite Based Materials[J]. Ceram. Int., 2003, 29(2): 159-168.

[16]

Schneider H, Schreuer J, Hildmann B. Structure and Properties of Mullite - a Review[J]. J. Eur. Ceram. Soc., 2008, 28(2): 329-344.

[17]

Dong Y, Feng X, Feng X, et al. Preparation of Low-Cost Mullite Ceramics from Natural Bauxite and Industrial Waste Fly Ash[J]. J. Alloy Compd., 2008, 460(1): 599-606.

[18]

Sainz M A, Serrano F J, Amigo J M, et al. XRD Microstructural Analysis of Mullites Obtained from Kaolinite-Alumina Mixtures[J]. J. Eur. Ceram. Soc., 2000, 20(4): 403-412.

[19]

Taherabadi L, Trujillo J E, Chen T, et al. Observation of Dislocation Assisted High Temperature Deformation in Mullite and Mullite Composites[J]. J. Eur. Ceram. Soc., 2008, 28(2): 371-376.

[20]

Han G, Yang S, Peng W, et al. Enhanced Recycling and Utilization of Mullite from Coal Fly Ash with a Flotation and Metallurgy Process[J]. J. Clean Prod., 2018, 178(20): 804-813.

[21]

Zhang Y, Ding Y, Gao J, et al. Mullite Fibres Prepared by Sol–Gel Method Using Polyvinyl Butyral[J]. J. Eur. Ceram. Soc., 2009, 29(6): 1 101-1 107.

[22]

Chen Y, Wang M, Hon M. Phase Transformation and Growth of Mullite in Kaolin Ceramics[J]. J. Eur. Ceram. Soc., 2004, 24(8): 2 389-2 397.

[23]

Martín-Márquez J, Rincón J M, Romero M. Mullite Development on Firing in Porcelain Stoneware Bodies[J]. J. Eur. Ceram. Soc., 2010, 30(7): 1 599-1 607.

[24]

Chen C, Lan G, Tuan W. Preparation of Mullite by the Reaction Sintering of Kaolinite and Alumina[J]. J. Eur. Ceram. Soc., 2000, 20(14-15): 2 519-2 525.

[25]

Medvedovski E. Alumina–Mullite Ceramics for Structural Applications[J]. Ceram. Int., 2006, 32(4): 369-375.

[26]

Wen H, Xi H, Li Q, et al. In-Situ Reaction Sintering and Characterization of Mullite-Cordierite Composites[J]. J. Chi. Ceram. Soc., 2010, 38(2): 347-351.

[27]

Kuscer D, Bantan I, Hrovat M, et al. The Microstructure, Coefficient of Thermal Expansion and Flexural Strength of Cordierite Ceramics Prepared from Alumina with Different Particle Sizes[J]. J. Eur. Ceram. Soc., 2017, 37(2): 739-746.

[28]

Albhilil A A, Palou M, Kozánková J, et al. Thermal and Microstructure Stability of Cordierite–Mullite Ceramics Prepared from Natural Raw Materials-Part II[J]. Arab. J. Sci. Eng., 2015, 40(1): 151-161.

[29]

Chotard T, Soro J, Lemercier H, et al. High Temperature Characterisation of Cordierite–Mullite Refractory by Ultrasonic Means[J]. J. Eur. Ceram. Soc., 2008, 28(11): 2 129-2 135.

[30]

Camerucci M A, Urretavizcaya G, Cavalieri A L. Mechanical Behavior of Cordierite and Cordierite–Mullite Materials Evaluated by Indentation Techniques[J]. J. Eur. Ceram. Soc., 2001, 21(9): 1 195-1 204.

[31]

Medvedovski E. Alumina–Mullite Ceramics for Structural Applications[J]. Ceram. Int., 2006, 32(4): 369-375.

[32]

Khezrabadi M N, Naghizadeh R, Assadollahpour P, et al. An Investigation on the Properties and Microstructure of Mullite-Bonded Cordierite Ceramics[J]. J. Ceram. Process. Res., 2007, 8(6): 431-436.

[33]

Chen G. Sintering, Crystallization, and Properties of CaO Doped Cordierite- Based Glass-Ceramics[J]. J. Alloy Compd., 2008, 455: 298-302.

[34]

Yoon S O, Jo T H, Kim K S, et al. Phase Formation in the Al2O3, Quartz, and Cordierite-Zinc Borosilicate Glass Composites[J]. Ceram. Int., 2008, 34(8): 2 155-2 157.

[35]

Camerucci M A, Cavalieri A L. Wetting and Penetration of Cordierite and Mullite Materials by Non-Stoichiometric Cordierite Liquids[J]. Ceram. Int., 2008, 34(7): 1 753-1 762.

[36]

Tunç T, Demirkira A S. The Effects of Mechanical Activation on the Sintering and Microstructure Properties of Cordierite Produced from Natural Zeolite[J]. Powder Technol., 2014, 260: 7-14.

[37]

Han J, Wan B. Thermal Shock Resistance of Ceramics with Temperature- Dependent Materials Properties at Elevated Temperature[J]. Acta Mat., 2011, 59(4): 1 373-1 382.

[38]

Benito J M, Turrillas X, Cuello G J, et al. Cordierite Synthesis. A Time-Resolved Neutron Diffraction Study[J]. J. Eur. Ceram. Soc., 2012, 32(2): 371-379.

[39]

Rendtorff N M, Garrido L B, Aglietti E F. Thermal Shock Behavior of Dense Mullite-Zirconia Composites Obtained by Two Processing Routes[J]. Ceram. Int., 2008, 34(8): 2 017-2 024.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/