Si/Cu3Si@C Composite Encapsulated in CNTs Network as High Performance Anode for Lithium Ion Batteries

Haoqi Lu , Weilun Chen , Qiaoyun Liu , Chunlei Pang , Lihong Xue , Wuxing Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1055 -1061.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1055 -1061. DOI: 10.1007/s11595-019-2159-y
Advanced Materials

Si/Cu3Si@C Composite Encapsulated in CNTs Network as High Performance Anode for Lithium Ion Batteries

Author information +
History +
PDF

Abstract

Si/Cu3Si@C composites encapsulated in CNTs network (SCC-CNTs) were synthesized via the combination of ball-milling and CVD methods. SCC-CNTs consist of conductive Cu3Si, amorphous carbon layer, cross-linked CNTs, and the etched pores, which can play the synergistic effects on the improvement of electronic conductivity and Li+ diffusion. The volume expansion of Si anode is also suppressed during the electrochemical process. The SCC-CNTs composites demonstrate a remarkably improved electrochemical performance compared with pure Si, which can deliver a discharge capacity of 2 171 mAh·g−1 at 0.4 A·g−1 with ICE of 85.2%, and retain 1 197 mAh· g−1 after 150 cycles. This work provides a facile approach to massively produce the high-performance Si-based anode materials for next-generation LIBs.

Keywords

lithium-ion battery / anodes / silicon-based composite / CNTs / Cu3Si

Cite this article

Download citation ▾
Haoqi Lu, Weilun Chen, Qiaoyun Liu, Chunlei Pang, Lihong Xue, Wuxing Zhang. Si/Cu3Si@C Composite Encapsulated in CNTs Network as High Performance Anode for Lithium Ion Batteries. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1055-1061 DOI:10.1007/s11595-019-2159-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oumellal Y, Rougier A, Nazri G A, et al. Metal Hydrides for Lithium-Ion Batteries[J]. Nature Mater., 2008, 7(11): 916-921.

[2]

Sun Y K, Myung S T, Park B C, et al. High-Energy Cathode Materials for Long-Life and Safe Lithium Batteries[J]. Nature Mater., 2009, 8(4): 320-324.

[3]

Wang J W, He Y, Fan F F, et al. Two-Phase Electrochemical Lithiation in Amorphous Silicon[J]. Nano Lett., 2013, 13(2): 709-715.

[4]

Wu H, Cui Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries[J]. Nano Today, 2012, 7(5): 414-429.

[5]

Park C M, Kim J H, Kim H. Li-Alloy Based Anode Materials for Li Secondary Batteries[J]. Chem. Soc. Rev., 2010, 39(8): 3 115-3 141.

[6]

Kasavajjula U, Wang C S, Appleby AJ. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells[J]. J. Power Sources, 2007, 163(2): 1 003-1 039.

[7]

Liu Y, Lv J, Fei Y, et al. Improvement of Storage Performance of LiMn2O4/Graphite Battery with AlF3-Coated LiMn2O4[J]. Ionics, 2013, 19(9): 1 241-1 246.

[8]

Michan A L, Parimalam B S, Leskes M, et al. Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation[J]. Chem. Mater., 2016, 28(22): 8 149-8 159.

[9]

Leggesse E G, Wei T, Nachimuthu S, et al. Theoretical Study of the Reductive Decomposition of Vinylethylene Sulfte as An Additive in Lithium Ion Battery[J]. J. Chin. Chem. Soc., 2016, 63(6): 480-487.

[10]

Chen C, Lee S H, Cho M S, et al. Cross-Linked Chitosan as an Effcient Binder for Si Anode of Li-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8(4): 2 658-2 665.

[11]

Liu Z, Han S, Xu C, et al. In Situ Crosslinked PVA-PEI Polymer Binder for Long-Cycle Silicon Anodes in Li-Ion Batteries[J]. RSC Adv., 2016, 6(72): 68 371-68 378.

[12]

Zeng W, Wang L, Peng X, et al. Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries[J]. Adv. Energy Mater., 2018, 11(8): 1 702 314-1 702 316.

[13]

Xu Z, Yang J, Zhang T, et al. Silicon Microparticle Anodes with Self-healing Multiple Network Binder[J]. Joule, 2018, 2(5): 818-819.

[14]

Munaoka T, Yan X, Lopez J, et al. Ionically Conductive Self-healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries[J]. Adv. Energy Mater., 2018, 8(11): 1 703 138-1 703 142.

[15]

Wang W, Kumta P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes[J]. ACS Nano, 2010, 4(4): 2 233-2 241.

[16]

Wu H, Zheng G Y, Liu N, et al. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes[J]. Nano Lett., 2012, 12(2): 904-909.

[17]

Liu N, Wu H, McDowell M T, et al. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes[J]. Nano Lett., 2012, 12(6): 3 315-3 321.

[18]

Yoo J K, Kim J, Jung Y S, et al. Scalable Fabrication of Silicon Nanotubes and Their Application to Energy Storage[J]. Adv. Mater., 2012, 24(40): 5 452-5 456.

[19]

Ng S H, Wang J, Wexler D, et al. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries[J]. Angew. Chem. Int. Ed., 2006, 45(41): 6 896-6 899.

[20]

Zhang R, Du Y, Li D, et al. Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework[J]. Adv. Mater., 2014, 26(39): 6 749-6 755.

[21]

Lu Z, Liu N, Lee H W, et al. Nonflling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes[J]. ACS Nano, 2015, 9(3): 2 540-2 547.

[22]

Zong L Q, Jin Y L C, et al. Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes[J]. Nano Lett., 2016, 16(11): 7 210-7 215.

[23]

Su J M, Zhao J Y, Li L Y, et al. Three-Dimensional Porous Si and SiO2 with in Situ Decorated Carbon Nanotubes as Anode Materials for Li-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(21): 17 807-17 813.

[24]

Chen S, Shen L, Aken P A, et al. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries[J]. Adv. Mater., 2017, 29(21): 1 605 650

[25]

Tang C, Zhu J, Wei X, et al. Copper Silicate Nanotubes Anchored on Reduced Graphene Oxide for Long-Life Lithium-Ion Battery[J]. Energy Storage Mater., 2017, 7: 152-156.

[26]

Liu Z, Guan D, Yu Q, et al. Monodisperse and Homogeneous SiOx/C Microspheres: A Promising High-Capacity and Durable Anode Material for Lithium-Ion Batteries[J]. Energy Storage Mater., 2018, 13: 112-118.

[27]

Tang C, Liu Y, Xu C, et al. Ultrafine Nickel-Nanoparticle-Enabled SiO2 Hierarchical Hollow Spheres for High-Performance Lithium Storage[J]. Adv. Func. Mater., 2018, 28: 1 704 561.

[28]

Li Z, He Q, He L, et al. Self-Sacrifced Synthesis of Carbon-Coated SiOx Nanowires for High Capacity Lithium Ion Battery Anodes[J]. J. Mater. Chem. A, 2017, 5: 4 183-4 189.

[29]

Yu Q, Ge P, Liu Z, et al. Ultrafine SiOx/C Nanospheres and Their Pomegranate-Like Assemblies for High Performance Lithium Storage[J]. J. Mater. Chem. A, 2018, 6: 14 903-14 909.

[30]

Botas C, Carriazo D, Zhang W, et al. Silicon-Reduced Graphene Oxide Self-Standing Composites Suitable as Binder-Free Anodes for Lithium-Ion Batteries[J]. Acs Appl. Mater. Interfaces, 2016, 8(42): 28 800-28 808.

[31]

Huang H Y, Bao Q, Duh J G, et al. Top-Down Dispersion Meets Bottom-Up Synthesis: Merging Ultranano Silicon and Graphene Nanosheets for Superior Hybrid Anodes for Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2016, 4(25): 9 986-9 997.

[32]

Zhou M, Li X L, Wang B, et al. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies[J]. Nano Lett., 2015, 15(9): 6 222-6 228.

[33]

Zhou J B, Lan Y, Zhang K L, et al. In Situ Growth of Carbon Nanotube Wrapped Si Composites as Anodes for High Performance Lithium Ion Batteries[J]. Nanoscale, 2016, 8(9): 4 903-4 907.

[34]

Jeong S, Lee J P, Ko M, et al. Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-ion Batteries[J]. Nano Lett., 2013, 13(7): 3 403-3 407.

[35]

Xu Q, Li J Y, Sun J K, et al. Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes[J]. Adv. Energy Mater., 2017, 7(3): 1 601 481

[36]

Liu X M, Huang Z D, Oh S W, et al. Carbon Nanotube (CNT)-Based Composites as Electrode Material for Rechargeable Li-Ion Batteries: A Review[J]. Compos. Sci. Technol., 2012, 72(2): 121-144.

[37]

Chen Y F, Du N, Zhang H, et al. Facile Synthesis of Uniform MWCNT@Si Nanocomposites as High-Performance Anode Materials for Lithium-Ion Batteries[J]. J. Alloys Compounds, 2015, 622: 966-972.

[38]

Kim T, Mo Y H, Nahm K S, et al. Carbon Nanotubes (CNTs) as a Buffer Layer in Silicon/CNTs Composite Electrodes for Lithium Secondary Batteries[J]. J. Power Sources, 2006, 162(2): 1 275-1 281.

[39]

Xi S Q, Zhou J G, Wang X T, et al. The Reduction of CuO by Si During Ball Milling[J]. J. Mater. Sci. Lett., 1996, 15(7): 634-635.

[40]

Chromik R, Neils W K, Cotts E J. Termodynamic and Kinetic Study of Solid State Reactions in the Cu-Si System[J]. J. Appl. Phys., 1999, 86: 4 273-4 281

[41]

Wang F, Xu S H, Zhu S S, et al. Ni-Coated Si Microchannel Plate Electrodes in Three-Dimensional Lithium-Ion Battery Anodes[J]. Electrochim. Acta, 2013, 87: 250-255.

[42]

Chan C K, Peng H L, Liu G, et al. High-Performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nature Nanotech., 2008, 3(1): 31-35.

[43]

Kim H, Cho J S L E M S C-S N f L B A Material[J]}. Nano Lett., 2008, 8(11): 3 688-3 691.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/