Effects of Fe Modified Na2WO4 Additive on the Hydrogen Storage Properties of MgH2

Jiasheng Wang , Wei Zhang , Bo Li , Na Shen , Quan Huo

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1030 -1036.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (5) : 1030 -1036. DOI: 10.1007/s11595-019-2155-2
Advanced Materials

Effects of Fe Modified Na2WO4 Additive on the Hydrogen Storage Properties of MgH2

Author information +
History +
PDF

Abstract

A Fe modified Na2WO4 compound was synthesized by a solution impregnation method and was ball-milled with MgH2 to constitute a novel MgH2-Fe2O3/Na2WO4 composite. The effects of the Fe2O3/Na2WO4 additive on the hydrogen storage properties of MgH2 together with the corresponding mechanism were investigated. At 423 K, within the first 200 seconds, the hydrogen absorption amount of MgH2+20 wt% Fe2O3/Na2WO4 was almost 5 times that of pure MgH2. And at 573 K, its total hydrogen desorption amount was 7 times that for pure MgH2. Meanwhile, its onset dehydrogenation temperature was 110 K lower than that of pure MgH2. It was worth noting that the MgH2+20 wt% Fe/Na2WO4 presented the lower dehydrogenation reaction activation energy (E a) of 35.9 kJ·mol-1 compared to that of pure MgH2. The active MgWO4, Mg2FeH6 and MgO formed during the milling process were responsible for the improvement of the hydrogen storage properties for MgH2.

Keywords

hydrogen storage composite / MgH2 / Fe2O3/Na2WO4 / catalytic effects / activation energy

Cite this article

Download citation ▾
Jiasheng Wang, Wei Zhang, Bo Li, Na Shen, Quan Huo. Effects of Fe Modified Na2WO4 Additive on the Hydrogen Storage Properties of MgH2. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(5): 1030-1036 DOI:10.1007/s11595-019-2155-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ouyang L Z, Huang J M, Wang H, et al. Excellent Hydrolysis Performances of Mg3RE Hydrides[J]. Int. J Hydrogen Energy, 2013, 38(7): 2 973-2 978.

[2]

Cui Y J, Yang C F, Li M, et al. Two Dimension C3N4/MoS2 Nano-composites with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 23-29.

[3]

Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review[J]. Int. J. Hydrogen Energy, 2007, 32: 1 121-1 140.

[4]

Mohsen D, Mitlin D. TEM Analysis of the Microstructure in TiF3-catalyzed and Pure MgH2 during the Hydrogen Storage Cycling, Acta Materialia[J]. Acta Materialia, 2012, 60(19): 6 441-6 456.

[5]

Abdellatief M, Campostrini R, Leoni M, et al. Effects of SnO2 on Hydrogen Desorption of MgH2[J]. Int. J. Hydrogen Energy, 2013, 38(11): 4 664-4 669.

[6]

Pei P, Song X P, Liu J, et al. Study on the Hydrogen Desorption Mechanism of a Mg-V Composite Prepared by SPS[J]. Int. J. Hydrogen Energy, 2012, 37(1): 984-989.

[7]

Leng H Y, Pan Y B, Li Q, et al. Effect of LiH on Hydrogen Storage Property of MgH2[J]. Int. J. Hydrogen Energy, 2014, 39: 13 622-13 627.

[8]

Kurko S, Rašković Novaković N, et al. Hydrogen Storage Properties of MgH2 Mechanically Milled with α and β SiC[J]. Int. J. Hydrogen Energy, 2011, 36(1): 549-554.

[9]

Shang C X, Guo Z X. Effect of Carbon on Hydrogen Desorption and Absorption of Mechanically Milled MgH2[J]. J. Power Sources, 2004, 129(1): 73-80.

[10]

Tian M, Shang C X. Effect of TiC and Mo2C on Hydrogen Desorption of Mechanically Milled MgH2[J]. J. Chem. Sci. Tech., 2012, 1: 54-59.

[11]

Ding X Q, Zhu Y F, Wei L J, et al. Synergistic Hydrogen Desorption of HCS MgH2 + LiAlH4 Composite[J]. Energy, 2013, 55: 933-938.

[12]

Liang C, Liang S, Xia Y, et al. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Phys.-Chim. Sin., 2015, 31(4): 627-635.

[13]

Song M Y, Kwon S N, Kwak Y J, et al. Improvement of Hydrogen-storage Properties of MgH2 by Addition of Li3N, LiBH4, Fe and/or Ti[J]. Mater. Res. Bull., 2013, 48(1): 74-78.

[14]

Wang J S, Han S M, Zhang W, et al. Effects of MoS2 Addition on the Hydrogen Storage Properties of 2LiBH4-MgH2 Systems[J]. Int. J. Hydrogen Energy, 2013, 38(34): 14 631-14 637.

[15]

Conceição M O T, Santos D S, Dias M L. Hydrogen Sorption Enhancement by Nb2O5 and Nb Catalysts Combined with MgH2[J]. J. Alloys Compd., 2013, 550: 179-184.

[16]

Aresfernández J, Agueyzinsou K F. Superior MgH2 Kinetics with MgO Addition: A Tribological Effect[J]. Catalysts, 2012, 2: 330-343.

[17]

Jin S A, Shim J H, Cho Y W, et al. Dehydrogenation and Hydrogenation Characteristics of MgH2 with Transition Metal Fluorides[J]. J. Power Sources, 2007, 172(2): 859-862.

[18]

Zhang J, Huang Y N, Mao C, et al. Synergistic Effect of Ti and F Co-doping on Dehydrogenation Properties of MgH2 From First-Principles Calculations[J]. J. Alloys Compd., 2012, 538: 205-211.

[19]

Jia Y H, Han S M, Zhang W, et al. Hydrogen Absorption and Desorp-tion Kinetics of MgH2 Catalyzed by MoS2 and MoO2[J]. Int. J. Hydrogen Energy, 2013, 38(5): 2 352-2 356.

[20]

Wang J S, Zhang W, Cheng Y, et al. Hydrogenation/dehydrogenation Performance of MgH2 Catalyzed by WS2[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(4): 670-673.

[21]

Zhang W, Cheng Y, Han D, et al. The Hydrogen Storage Properties of MgH2-Fe3S4, Composites[J]. Energy, 2015, 93: 625-630.

[22]

Puszkiel J, German F, Larochette P A, et al. Sorption Behavior of the MgH2-Mg2FeH6, Hydride Storage System Synthesized by Mechanical Milling Followed by Sintering[J]. Int. J. Hydrogen Energy, 2013, 38(34): 14 618-14 630.

[23]

Shao H, Felderhoff M, Schüth F. Hydrogen Storage Properties of Nanostructured MgH2/TiH2, Composite Prepared by Ball Mlling under High Hydrogen Pressure[J]. Int. J. Hydrogen Energy, 2011, 36: 10 828-10 833.

[24]

Nielsen T K, Manickam K, Hirscher M K, et al. Confinement of MgH2 Nanoclusters within Nanoporous Aerogel Scaffold Materials[J]. ACS Nano, 2009, 3(11): 3 521-3 528.

[25]

Jongh P E D, Wagemans R W P, Eggenhuisen T M, et al. The Preparation of Carbon-supported Magnesium Nanoparticles Using Melt Infiltration[J]. Chem Mater., 2007, 19(24): 6 052-6 057.

[26]

Wang H, Zhang S F, Liu J W, et al. Enhanced Dehydrogenation of Nanoscale MgH2 Confined by Ordered Mesoporous Silica[J]. Mater Chem. Phys., 2012, 136(1): 146-150.

[27]

Xu G, Shen N, Chen L J, et al. Effect of BiVO4 Additive on the Hydrogen Storage Properties of MgH2[J]. Mater. Res. Bull, 2017, 89: 197-203.

[28]

Wang J S, Han S M, Li Y, et al. Hydriding/Dehydriding Properties of an MgH2+20%(w) MgTiO3 Composite[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2 323-2 327.

[29]

Shan J W, Li P, Wan Q, et al. Significantly Improved Dehydrogenation of Ball-Milled MgH2 Doped with CoFe2O4 Nanoparticles[J]. J. Power Sources, 2014, 268: 778-786.

[30]

Li P, Wan Q, Li Z L, et al. MgH2 Dehydrogenation Properties Improved by MnFe2O4 Nanoparticles[J]. J. Power Sources, 2013, 239: 201-206.

[31]

Zhang W, Shen N, Han S M, et al. Hydrogen Storage Properties of MgH2+20 wt% Na2WO4 Composite[J]. Mater. Res. Bull., 2015, 72: 197-203.

[32]

Wang J, You J Q, Wang Y Y, et al. Raman Spectroscopic Study Oil the Dehydration Process and the Mcrostructure of the Na2 W04 · 2H2O Crystal and Its Melt.[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 307-310.

[33]

Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1 417-1 421.

[34]

Kurko S, Aurora A, Gattia D M, et al. Hydrogen Sorption Properties of MgH2/NaBH4 Composites[J]. Int. J. Hydrogen Energy, 2013, 38(27): 12 140-12 145.

[35]

Günter J R, Amberg M. High-temperature Magnesium Tungstate MgWO4 Prepared at Moderate Temperatures [J]. Solid State Ionics, 1989, 32-33: 141-146.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/